You are given an m x n
integer grid accounts
where accounts[i][j]
is the amount of money the ith
customer has in the jth
bank. Return the wealth that the richest customer has.
A customer's wealth is the amount of money they have in all their bank accounts. The richest customer is the customer that has the maximum wealth.
Example 1:
Input: accounts = [[1,2,3],[3,2,1]] Output: 6 Explanation:1st customer has wealth = 1 + 2 + 3 = 6
2nd customer has wealth = 3 + 2 + 1 = 6
Both customers are considered the richest with a wealth of 6 each, so return 6.
Example 2:
Input: accounts = [[1,5],[7,3],[3,5]] Output: 10 Explanation: 1st customer has wealth = 6 2nd customer has wealth = 10 3rd customer has wealth = 8 The 2nd customer is the richest with a wealth of 10.
Example 3:
Input: accounts = [[2,8,7],[7,1,3],[1,9,5]] Output: 17
Constraints:
m == accounts.length
n == accounts[i].length
1 <= m, n <= 50
1 <= accounts[i][j] <= 100
class Solution:
def maximumWealth(self, accounts: List[List[int]]) -> int:
return max(sum(v) for v in accounts)
class Solution {
public int maximumWealth(int[][] accounts) {
int ans = 0;
for (var e : accounts) {
int s = 0;
for (int v : e) {
s += v;
}
ans = Math.max(ans, s);
}
return ans;
}
}
class Solution {
public:
int maximumWealth(vector<vector<int>>& accounts) {
int ans = 0;
for (auto& v : accounts) {
ans = max(ans, accumulate(v.begin(), v.end(), 0));
}
return ans;
}
};
func maximumWealth(accounts [][]int) int {
ans := 0
for _, e := range accounts {
s := 0
for _, v := range e {
s += v
}
if ans < s {
ans = s
}
}
return ans
}
function maximumWealth(accounts: number[][]): number {
return accounts.reduce(
(res, account) =>
Math.max(
res,
account.reduce((p, v) => p + v),
),
0,
);
}
impl Solution {
pub fn maximum_wealth(accounts: Vec<Vec<i32>>) -> i32 {
accounts
.iter()
.map(|account| account.iter().sum())
.max()
.unwrap()
}
}
class Solution {
fun maximumWealth(accounts: Array<IntArray>): Int {
var max = 0
for (account in accounts) {
val sum = account.sum()
if (sum > max) {
max = sum
}
}
return max
}
}