给你一个大小为 rows x cols
的矩阵 grid
。最初,你位于左上角 (0, 0)
,每一步,你可以在矩阵中 向右 或 向下 移动。
在从左上角 (0, 0)
开始到右下角 (rows - 1, cols - 1)
结束的所有路径中,找出具有 最大非负积 的路径。路径的积是沿路径访问的单元格中所有整数的乘积。
返回 最大非负积 对 109 + 7
取余 的结果。如果最大积为负数,则返回 -1
。
注意,取余是在得到最大积之后执行的。
示例 1:
输入:grid = [[-1,-2,-3], [-2,-3,-3], [-3,-3,-2]] 输出:-1 解释:从 (0, 0) 到 (2, 2) 的路径中无法得到非负积,所以返回 -1
示例 2:
输入:grid = [[1,-2,1], [1,-2,1], [3,-4,1]] 输出:8 解释:最大非负积对应的路径已经用粗体标出 (1 * 1 * -2 * -4 * 1 = 8)
示例 3:
输入:grid = [[1, 3], [0,-4]] 输出:0 解释:最大非负积对应的路径已经用粗体标出 (1 * 0 * -4 = 0)
示例 4:
输入:grid = [[ 1, 4,4,0], [-2, 0,0,1], [ 1,-1,1,1]] 输出:2 解释:最大非负积对应的路径已经用粗体标出 (1 * -2 * 1 * -1 * 1 * 1 = 2)
提示:
1 <= rows, cols <= 15
-4 <= grid[i][j] <= 4
方法一:动态规划
时间复杂度
class Solution:
def maxProductPath(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
mod = 10**9 + 7
dp = [[[grid[0][0]] * 2 for _ in range(n)] for _ in range(m)]
for i in range(1, m):
dp[i][0] = [dp[i - 1][0][0] * grid[i][0]] * 2
for j in range(1, n):
dp[0][j] = [dp[0][j - 1][0] * grid[0][j]] * 2
for i in range(1, m):
for j in range(1, n):
v = grid[i][j]
if v >= 0:
dp[i][j][0] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v
dp[i][j][1] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v
else:
dp[i][j][0] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v
dp[i][j][1] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v
ans = dp[-1][-1][1]
return -1 if ans < 0 else ans % mod
class Solution {
private static final int MOD = (int) 1e9 + 7;
public int maxProductPath(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
long[][][] dp = new long[m][n][2];
dp[0][0][0] = grid[0][0];
dp[0][0][1] = grid[0][0];
for (int i = 1; i < m; ++i) {
dp[i][0][0] = dp[i - 1][0][0] * grid[i][0];
dp[i][0][1] = dp[i - 1][0][1] * grid[i][0];
}
for (int j = 1; j < n; ++j) {
dp[0][j][0] = dp[0][j - 1][0] * grid[0][j];
dp[0][j][1] = dp[0][j - 1][1] * grid[0][j];
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
int v = grid[i][j];
if (v >= 0) {
dp[i][j][0] = Math.min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
} else {
dp[i][j][0] = Math.max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
dp[i][j][1] = Math.min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
}
}
}
long ans = dp[m - 1][n - 1][1];
return ans < 0 ? -1 : (int) (ans % MOD);
}
}
using ll = long long;
const int mod = 1e9 + 7;
class Solution {
public:
int maxProductPath(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
vector<vector<vector<ll>>> dp(m, vector<vector<ll>>(n, vector<ll>(2, grid[0][0])));
for (int i = 1; i < m; ++i) {
dp[i][0][0] = dp[i - 1][0][0] * grid[i][0];
dp[i][0][1] = dp[i - 1][0][1] * grid[i][0];
}
for (int j = 1; j < n; ++j) {
dp[0][j][0] = dp[0][j - 1][0] * grid[0][j];
dp[0][j][1] = dp[0][j - 1][1] * grid[0][j];
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
int v = grid[i][j];
if (v >= 0) {
dp[i][j][0] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
dp[i][j][1] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
} else {
dp[i][j][0] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
dp[i][j][1] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
}
}
}
ll ans = dp[m - 1][n - 1][1];
return ans < 0 ? -1 : (int) (ans % mod);
}
};
func maxProductPath(grid [][]int) int {
m, n := len(grid), len(grid[0])
dp := make([][][]int, m)
for i := range dp {
dp[i] = make([][]int, n)
for j := range dp[i] {
dp[i][j] = make([]int, 2)
}
}
dp[0][0] = []int{grid[0][0], grid[0][0]}
for i := 1; i < m; i++ {
dp[i][0][0] = dp[i-1][0][0] * grid[i][0]
dp[i][0][1] = dp[i-1][0][1] * grid[i][0]
}
for j := 1; j < n; j++ {
dp[0][j][0] = dp[0][j-1][0] * grid[0][j]
dp[0][j][1] = dp[0][j-1][1] * grid[0][j]
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
v := grid[i][j]
if v >= 0 {
dp[i][j][0] = min(dp[i-1][j][0], dp[i][j-1][0]) * v
dp[i][j][1] = max(dp[i-1][j][1], dp[i][j-1][1]) * v
} else {
dp[i][j][0] = max(dp[i-1][j][1], dp[i][j-1][1]) * v
dp[i][j][1] = min(dp[i-1][j][0], dp[i][j-1][0]) * v
}
}
}
ans := dp[m-1][n-1][1]
if ans < 0 {
return -1
}
var mod int = 1e9 + 7
return ans % mod
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}