Skip to content

Latest commit

 

History

History
240 lines (198 loc) · 7.25 KB

File metadata and controls

240 lines (198 loc) · 7.25 KB

English Version

题目描述

给你一个大小为 rows x cols 的矩阵 grid 。最初,你位于左上角 (0, 0) ,每一步,你可以在矩阵中 向右向下 移动。

在从左上角 (0, 0) 开始到右下角 (rows - 1, cols - 1) 结束的所有路径中,找出具有 最大非负积 的路径。路径的积是沿路径访问的单元格中所有整数的乘积。

返回 最大非负积 109 + 7 取余 的结果。如果最大积为负数,则返回 -1

注意,取余是在得到最大积之后执行的。

 

示例 1:

输入:grid = [[-1,-2,-3],
             [-2,-3,-3],
             [-3,-3,-2]]
输出:-1
解释:从 (0, 0) 到 (2, 2) 的路径中无法得到非负积,所以返回 -1

示例 2:

输入:grid = [[1,-2,1],
             [1,-2,1],
             [3,-4,1]]
输出:8
解释:最大非负积对应的路径已经用粗体标出 (1 * 1 * -2 * -4 * 1 = 8)

示例 3:

输入:grid = [[1, 3],
             [0,-4]]
输出:0
解释:最大非负积对应的路径已经用粗体标出 (1 * 0 * -4 = 0)

示例 4:

输入:grid = [[ 1, 4,4,0],
             [-2, 0,0,1],
             [ 1,-1,1,1]]
输出:2
解释:最大非负积对应的路径已经用粗体标出 (1 * -2 * 1 * -1 * 1 * 1 = 2)

 

提示:

  • 1 <= rows, cols <= 15
  • -4 <= grid[i][j] <= 4

解法

方法一:动态规划

时间复杂度 $O(m\times n)$。其中 $m$$n$ 分别为矩阵的行数和列数。

Python3

class Solution:
    def maxProductPath(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        mod = 10**9 + 7
        dp = [[[grid[0][0]] * 2 for _ in range(n)] for _ in range(m)]
        for i in range(1, m):
            dp[i][0] = [dp[i - 1][0][0] * grid[i][0]] * 2
        for j in range(1, n):
            dp[0][j] = [dp[0][j - 1][0] * grid[0][j]] * 2
        for i in range(1, m):
            for j in range(1, n):
                v = grid[i][j]
                if v >= 0:
                    dp[i][j][0] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v
                    dp[i][j][1] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v
                else:
                    dp[i][j][0] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v
                    dp[i][j][1] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v
        ans = dp[-1][-1][1]
        return -1 if ans < 0 else ans % mod

Java

class Solution {
    private static final int MOD = (int) 1e9 + 7;

    public int maxProductPath(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        long[][][] dp = new long[m][n][2];
        dp[0][0][0] = grid[0][0];
        dp[0][0][1] = grid[0][0];
        for (int i = 1; i < m; ++i) {
            dp[i][0][0] = dp[i - 1][0][0] * grid[i][0];
            dp[i][0][1] = dp[i - 1][0][1] * grid[i][0];
        }
        for (int j = 1; j < n; ++j) {
            dp[0][j][0] = dp[0][j - 1][0] * grid[0][j];
            dp[0][j][1] = dp[0][j - 1][1] * grid[0][j];
        }
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                int v = grid[i][j];
                if (v >= 0) {
                    dp[i][j][0] = Math.min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
                    dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
                } else {
                    dp[i][j][0] = Math.max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
                    dp[i][j][1] = Math.min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
                }
            }
        }
        long ans = dp[m - 1][n - 1][1];
        return ans < 0 ? -1 : (int) (ans % MOD);
    }
}

C++

using ll = long long;
const int mod = 1e9 + 7;

class Solution {
public:
    int maxProductPath(vector<vector<int>>& grid) {
        int m = grid.size();
        int n = grid[0].size();
        vector<vector<vector<ll>>> dp(m, vector<vector<ll>>(n, vector<ll>(2, grid[0][0])));
        for (int i = 1; i < m; ++i) {
            dp[i][0][0] = dp[i - 1][0][0] * grid[i][0];
            dp[i][0][1] = dp[i - 1][0][1] * grid[i][0];
        }
        for (int j = 1; j < n; ++j) {
            dp[0][j][0] = dp[0][j - 1][0] * grid[0][j];
            dp[0][j][1] = dp[0][j - 1][1] * grid[0][j];
        }
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                int v = grid[i][j];
                if (v >= 0) {
                    dp[i][j][0] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
                    dp[i][j][1] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
                } else {
                    dp[i][j][0] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
                    dp[i][j][1] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
                }
            }
        }
        ll ans = dp[m - 1][n - 1][1];
        return ans < 0 ? -1 : (int) (ans % mod);
    }
};

Go

func maxProductPath(grid [][]int) int {
	m, n := len(grid), len(grid[0])
	dp := make([][][]int, m)
	for i := range dp {
		dp[i] = make([][]int, n)
		for j := range dp[i] {
			dp[i][j] = make([]int, 2)
		}
	}
	dp[0][0] = []int{grid[0][0], grid[0][0]}
	for i := 1; i < m; i++ {
		dp[i][0][0] = dp[i-1][0][0] * grid[i][0]
		dp[i][0][1] = dp[i-1][0][1] * grid[i][0]
	}
	for j := 1; j < n; j++ {
		dp[0][j][0] = dp[0][j-1][0] * grid[0][j]
		dp[0][j][1] = dp[0][j-1][1] * grid[0][j]
	}
	for i := 1; i < m; i++ {
		for j := 1; j < n; j++ {
			v := grid[i][j]
			if v >= 0 {
				dp[i][j][0] = min(dp[i-1][j][0], dp[i][j-1][0]) * v
				dp[i][j][1] = max(dp[i-1][j][1], dp[i][j-1][1]) * v
			} else {
				dp[i][j][0] = max(dp[i-1][j][1], dp[i][j-1][1]) * v
				dp[i][j][1] = min(dp[i-1][j][0], dp[i][j-1][0]) * v
			}
		}
	}
	ans := dp[m-1][n-1][1]
	if ans < 0 {
		return -1
	}
	var mod int = 1e9 + 7
	return ans % mod
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

...