Skip to content

Latest commit

 

History

History
508 lines (418 loc) · 11.4 KB

File metadata and controls

508 lines (418 loc) · 11.4 KB

English Version

题目描述

给定一棵 N 叉树的根节点 root ,计算这棵树的直径长度。

N 叉树的直径指的是树中任意两个节点间路径中 最长 路径的长度。这条路径可能经过根节点,也可能不经过根节点。

(N 叉树的输入序列以层序遍历的形式给出,每组子节点用 null 分隔)

 

示例 1:

输入:root = [1,null,3,2,4,null,5,6]
输出:3
解释:直径如图中红线所示。

示例 2:

输入:root = [1,null,2,null,3,4,null,5,null,6]
输出:4

示例 3:

输入: root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出: 7

 

提示:

  • N 叉树的深度小于或等于 1000 。
  • 节点的总个数在 [0, 10^4] 间。

解法

方法一:后序遍历求每个结点的深度,此过程中获取每个结点子树的最长两个伸展(深度),迭代获取最长路径。

相似题目:543. 二叉树的直径

方法二:两次 DFS。

首先对任意一个结点做 DFS 求出最远的结点,然后以这个结点为根结点再做 DFS 到达另一个最远结点。第一次 DFS 到达的结点可以证明一定是这个图的直径的一端,第二次 DFS 就会达到另一端。下面来证明这个定理。

定理:在一个连通无向无环图中,以任意结点出发所能到达的最远结点,一定是该图直径的端点之一。

证明:假设这条直径是 δ(s, t)。分两种情况:

  1. 当出发结点 y 在 δ(s, t) 时,假设到达的最远结点 z 不是 s, t 中的任一个。这时将 δ(y, z) 与不与之重合的 δ(y, s) 拼接(也可以假设不与之重合的是直径的另一个方向),可以得到一条更长的直径,与前提矛盾。

  2. 当出发结点 y 不在 δ(s, t) 上时,分两种情况:

    • 当 y 到达的最远结点 z 横穿 δ(s, t) 时,记与之相交的结点为 x。此时有 δ(y, z) = δ(y, x) + δ(x, z)。而此时 δ(y, z) > δ(y, t),故可得 δ(x, z) > δ(x, t)。由 1 的结论可知该假设不成立。
    • 当 y 到达的最远结点 z 与 δ(s, t) 不相交时,定义从 y 开始到 t 结束的简单路径上,第一个同时也存在于简单路径 δ(s, t) 上的结点为 x,最后一个存在于简单路径 δ(y, z) 上的结点为 x’。如下图。那么根据假设,有 δ(y, z) ≥ δ(y, t) => δ(x', z) ≥ δ(x', x) + δ(x, t)。既然这样,那么 δ(x, z) ≥ δ(x, t),和 δ(s, t) 对应着直径这一前提不符,故 y 的最远结点 z 不可能在 s 到 t 这个直径对应的路外面。

因此定理成立。

相似题目:1245. 树的直径

Python3

"""
# Definition for a Node.
class Node:
    def __init__(self, val=None, children=None):
        self.val = val
        self.children = children if children is not None else []
"""


class Solution:
    def diameter(self, root: 'Node') -> int:
        """
        :type root: 'Node'
        :rtype: int
        """

        def dfs(root):
            if root is None:
                return 0
            nonlocal ans
            m1 = m2 = 0
            for child in root.children:
                t = dfs(child)
                if t > m1:
                    m2, m1 = m1, t
                elif t > m2:
                    m2 = t
            ans = max(ans, m1 + m2)
            return 1 + m1

        ans = 0
        dfs(root)
        return ans
"""
# Definition for a Node.
class Node:
    def __init__(self, val=None, children=None):
        self.val = val
        self.children = children if children is not None else []
"""


class Solution:
    def diameter(self, root: 'Node') -> int:
        """
        :type root: 'Node'
        :rtype: int
        """
        def build(root):
            nonlocal d
            if root is None:
                return
            for child in root.children:
                d[root].add(child)
                d[child].add(root)
                build(child)

        def dfs(u, t):
            nonlocal ans, vis, d, next
            if u in vis:
                return
            vis.add(u)
            for v in d[u]:
                dfs(v, t + 1)
            if ans < t:
                ans = t
                next = u

        d = defaultdict(set)
        vis = set()
        build(root)
        ans = 0
        next = None
        dfs(root, 0)
        vis.clear()
        dfs(next, 0)
        return ans

Java

/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;


    public Node() {
        children = new ArrayList<Node>();
    }

    public Node(int _val) {
        val = _val;
        children = new ArrayList<Node>();
    }

    public Node(int _val,ArrayList<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    private int ans;

    public int diameter(Node root) {
        ans = 0;
        dfs(root);
        return ans;
    }

    private int dfs(Node root) {
        if (root == null) {
            return 0;
        }
        int m1 = 0, m2 = 0;
        for (Node child : root.children) {
            int t = dfs(child);
            if (t > m1) {
                m2 = m1;
                m1 = t;
            } else if (t > m2) {
                m2 = t;
            }
        }
        ans = Math.max(ans, m1 + m2);
        return 1 + m1;
    }
}
/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;


    public Node() {
        children = new ArrayList<Node>();
    }

    public Node(int _val) {
        val = _val;
        children = new ArrayList<Node>();
    }

    public Node(int _val,ArrayList<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    private Map<Node, Set<Node>> g;
    private Set<Node> vis;
    private Node next;
    private int ans;

    public int diameter(Node root) {
        g = new HashMap<>();
        build(root);
        vis = new HashSet<>();
        next = root;
        ans = 0;
        dfs(next, 0);
        vis.clear();
        dfs(next, 0);
        return ans;
    }

    private void dfs(Node u, int t) {
        if (vis.contains(u)) {
            return;
        }
        vis.add(u);
        if (t > ans) {
            ans = t;
            next = u;
        }
        if (g.containsKey(u)) {
            for (Node v : g.get(u)) {
                dfs(v, t + 1);
            }
        }
    }

    private void build(Node root) {
        if (root == null) {
            return;
        }
        for (Node child : root.children) {
            g.computeIfAbsent(root, k -> new HashSet<>()).add(child);
            g.computeIfAbsent(child, k -> new HashSet<>()).add(root);
            build(child);
        }
    }
}

C++

/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> children;

    Node() {}

    Node(int _val) {
        val = _val;
    }

    Node(int _val, vector<Node*> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
public:
    int ans;

    int diameter(Node* root) {
        ans = 0;
        dfs(root);
        return ans;
    }

    int dfs(Node* root) {
        if (!root) return 0;
        int m1 = 0, m2 = 0;
        for (Node* child : root->children) {
            int t = dfs(child);
            if (t > m1) {
                m2 = m1;
                m1 = t;
            } else if (t > m2)
                m2 = t;
        }
        ans = max(ans, m1 + m2);
        return 1 + m1;
    }
};
/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> children;

    Node() {}

    Node(int _val) {
        val = _val;
    }

    Node(int _val, vector<Node*> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
public:
    unordered_map<Node*, unordered_set<Node*>> g;
    unordered_set<Node*> vis;
    Node* next;
    int ans;

    int diameter(Node* root) {
        build(root);
        next = root;
        ans = 0;
        dfs(next, 0);
        vis.clear();
        dfs(next, 0);
        return ans;
    }

    void dfs(Node* u, int t) {
        if (vis.count(u)) return;
        vis.insert(u);
        if (ans < t)
        {
            ans = t;
            next = u;
        }
        if (g.count(u))
            for (Node* v : g[u])
                dfs(v, t + 1);
    }

    void build(Node* root) {
        if (!root) return;
        for (Node* child : root->children)
        {
            g[root].insert(child);
            g[child].insert(root);
            build(child);
        }
    }
};

Go

/**
 * Definition for a Node.
 * type Node struct {
 *     Val int
 *     Children []*Node
 * }
 */

func diameter(root *Node) int {
	ans := 0
	var dfs func(root *Node) int
	dfs = func(root *Node) int {
		if root == nil {
			return 0
		}
		m1, m2 := 0, 0
		for _, child := range root.Children {
			t := dfs(child)
			if t > m1 {
				m2, m1 = m1, t
			} else if t > m2 {
				m2 = t
			}
		}
		ans = max(ans, m1+m2)
		return 1 + m1
	}
	dfs(root)
	return ans
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}
/**
 * Definition for a Node.
 * type Node struct {
 *     Val int
 *     Children []*Node
 * }
 */

func diameter(root *Node) int {
	g := make(map[*Node][]*Node)
	vis := make(map[*Node]bool)
	next := root
	ans := 0
	var build func(root *Node)
	build = func(root *Node) {
		if root == nil {
			return
		}
		for _, child := range root.Children {
			g[root] = append(g[root], child)
			g[child] = append(g[child], root)
			build(child)
		}
	}
	build(root)
	var dfs func(u *Node, t int)
	dfs = func(u *Node, t int) {
		if vis[u] {
			return
		}
		vis[u] = true
		if t > ans {
			ans = t
			next = u
		}
		if vs, ok := g[u]; ok {
			for _, v := range vs {
				dfs(v, t+1)
			}
		}
	}
	dfs(next, 0)
	vis = make(map[*Node]bool)
	dfs(next, 0)
	return ans
}

...