You are given the array nums
consisting of n
positive integers. You computed the sum of all non-empty continuous subarrays from the array and then sorted them in non-decreasing order, creating a new array of n * (n + 1) / 2
numbers.
Return the sum of the numbers from index left
to index right
(indexed from 1), inclusive, in the new array. Since the answer can be a huge number return it modulo 109 + 7
.
Example 1:
Input: nums = [1,2,3,4], n = 4, left = 1, right = 5 Output: 13 Explanation: All subarray sums are 1, 3, 6, 10, 2, 5, 9, 3, 7, 4. After sorting them in non-decreasing order we have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 1 to ri = 5 is 1 + 2 + 3 + 3 + 4 = 13.
Example 2:
Input: nums = [1,2,3,4], n = 4, left = 3, right = 4 Output: 6 Explanation: The given array is the same as example 1. We have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 3 to ri = 4 is 3 + 3 = 6.
Example 3:
Input: nums = [1,2,3,4], n = 4, left = 1, right = 10 Output: 50
Constraints:
n == nums.length
1 <= nums.length <= 1000
1 <= nums[i] <= 100
1 <= left <= right <= n * (n + 1) / 2
class Solution:
def rangeSum(self, nums: List[int], n: int, left: int, right: int) -> int:
arr = []
for i in range(n):
s = 0
for j in range(i, n):
s += nums[j]
arr.append(s)
arr.sort()
MOD = 10**9 + 7
return sum(arr[left - 1 : right]) % MOD
class Solution {
private static final int MOD = (int) 1e9 + 7;
public int rangeSum(int[] nums, int n, int left, int right) {
int[] arr = new int[n * (n + 1) / 2];
int idx = 0;
for (int i = 0; i < n; ++i) {
int s = 0;
for (int j = i; j < n; ++j) {
s += nums[j];
arr[idx++] = s;
}
}
Arrays.sort(arr);
int ans = 0;
for (int i = left - 1; i < right; ++i) {
ans = (ans + arr[i]) % MOD;
}
return ans;
}
}
func rangeSum(nums []int, n int, left int, right int) int {
var arr []int
for i := 0; i < n; i++ {
s := 0
for j := i; j < n; j++ {
s += nums[j]
arr = append(arr, s)
}
}
sort.Ints(arr)
mod := int(1e9) + 7
ans := 0
for i := left - 1; i < right; i++ {
ans = (ans + arr[i]) % mod
}
return ans
}