You are given a rectangular cake of size h x w
and two arrays of integers horizontalCuts
and verticalCuts
where:
horizontalCuts[i]
is the distance from the top of the rectangular cake to theith
horizontal cut and similarly, andverticalCuts[j]
is the distance from the left of the rectangular cake to thejth
vertical cut.
Return the maximum area of a piece of cake after you cut at each horizontal and vertical position provided in the arrays horizontalCuts
and verticalCuts
. Since the answer can be a large number, return this modulo 109 + 7
.
Example 1:
Input: h = 5, w = 4, horizontalCuts = [1,2,4], verticalCuts = [1,3] Output: 4 Explanation: The figure above represents the given rectangular cake. Red lines are the horizontal and vertical cuts. After you cut the cake, the green piece of cake has the maximum area.
Example 2:
Input: h = 5, w = 4, horizontalCuts = [3,1], verticalCuts = [1] Output: 6 Explanation: The figure above represents the given rectangular cake. Red lines are the horizontal and vertical cuts. After you cut the cake, the green and yellow pieces of cake have the maximum area.
Example 3:
Input: h = 5, w = 4, horizontalCuts = [3], verticalCuts = [3] Output: 9
Constraints:
2 <= h, w <= 109
1 <= horizontalCuts.length <= min(h - 1, 105)
1 <= verticalCuts.length <= min(w - 1, 105)
1 <= horizontalCuts[i] < h
1 <= verticalCuts[i] < w
- All the elements in
horizontalCuts
are distinct. - All the elements in
verticalCuts
are distinct.
class Solution:
def maxArea(self, h: int, w: int, horizontalCuts: List[int], verticalCuts: List[int]) -> int:
horizontalCuts.extend([0, h])
verticalCuts.extend([0, w])
horizontalCuts.sort()
verticalCuts.sort()
x = max(b - a for a, b in pairwise(horizontalCuts))
y = max(b - a for a, b in pairwise(verticalCuts))
return (x * y) % (10**9 + 7)
class Solution {
private static final int MOD = (int) 1e9 + 7;
public int maxArea(int h, int w, int[] horizontalCuts, int[] verticalCuts) {
Arrays.sort(horizontalCuts);
Arrays.sort(verticalCuts);
int m = horizontalCuts.length;
int n = verticalCuts.length;
long x = Math.max(horizontalCuts[0], h - horizontalCuts[m - 1]);
long y = Math.max(verticalCuts[0], w - verticalCuts[n - 1]);
for (int i = 1; i < m; ++i) {
x = Math.max(x, horizontalCuts[i] - horizontalCuts[i - 1]);
}
for (int i = 1; i < n; ++i) {
y = Math.max(y, verticalCuts[i] - verticalCuts[i - 1]);
}
return (int) ((x * y) % MOD);
}
}
class Solution {
public:
int maxArea(int h, int w, vector<int>& horizontalCuts, vector<int>& verticalCuts) {
horizontalCuts.push_back(0);
horizontalCuts.push_back(h);
verticalCuts.push_back(0);
verticalCuts.push_back(w);
sort(horizontalCuts.begin(), horizontalCuts.end());
sort(verticalCuts.begin(), verticalCuts.end());
int x = 0, y = 0;
for (int i = 1; i < horizontalCuts.size(); ++i) {
x = max(x, horizontalCuts[i] - horizontalCuts[i - 1]);
}
for (int i = 1; i < verticalCuts.size(); ++i) {
y = max(y, verticalCuts[i] - verticalCuts[i - 1]);
}
int mod = 1e9 + 7;
return (int) ((1ll * x * y) % mod);
}
};
func maxArea(h int, w int, horizontalCuts []int, verticalCuts []int) int {
horizontalCuts = append(horizontalCuts, []int{0, h}...)
verticalCuts = append(verticalCuts, []int{0, w}...)
sort.Ints(horizontalCuts)
sort.Ints(verticalCuts)
x, y := 0, 0
mod := int(1e9) + 7
for i := 1; i < len(horizontalCuts); i++ {
x = max(x, horizontalCuts[i]-horizontalCuts[i-1])
}
for i := 1; i < len(verticalCuts); i++ {
y = max(y, verticalCuts[i]-verticalCuts[i-1])
}
return (x * y) % mod
}
func max(a, b int) int {
if a > b {
return a
}
return b
}