给你一个 rows x cols
的矩阵 grid
来表示一块樱桃地。 grid
中每个格子的数字表示你能获得的樱桃数目。
你有两个机器人帮你收集樱桃,机器人 1 从左上角格子 (0,0)
出发,机器人 2 从右上角格子 (0, cols-1)
出发。
请你按照如下规则,返回两个机器人能收集的最多樱桃数目:
- 从格子
(i,j)
出发,机器人可以移动到格子(i+1, j-1)
,(i+1, j)
或者(i+1, j+1)
。 - 当一个机器人经过某个格子时,它会把该格子内所有的樱桃都摘走,然后这个位置会变成空格子,即没有樱桃的格子。
- 当两个机器人同时到达同一个格子时,它们中只有一个可以摘到樱桃。
- 两个机器人在任意时刻都不能移动到
grid
外面。 - 两个机器人最后都要到达
grid
最底下一行。
示例 1:
输入:grid = [[3,1,1],[2,5,1],[1,5,5],[2,1,1]] 输出:24 解释:机器人 1 和机器人 2 的路径在上图中分别用绿色和蓝色表示。 机器人 1 摘的樱桃数目为 (3 + 2 + 5 + 2) = 12 。 机器人 2 摘的樱桃数目为 (1 + 5 + 5 + 1) = 12 。 樱桃总数为: 12 + 12 = 24 。
示例 2:
输入:grid = [[1,0,0,0,0,0,1],[2,0,0,0,0,3,0],[2,0,9,0,0,0,0],[0,3,0,5,4,0,0],[1,0,2,3,0,0,6]] 输出:28 解释:机器人 1 和机器人 2 的路径在上图中分别用绿色和蓝色表示。 机器人 1 摘的樱桃数目为 (1 + 9 + 5 + 2) = 17 。 机器人 2 摘的樱桃数目为 (1 + 3 + 4 + 3) = 11 。 樱桃总数为: 17 + 11 = 28 。
示例 3:
输入:grid = [[1,0,0,3],[0,0,0,3],[0,0,3,3],[9,0,3,3]] 输出:22
示例 4:
输入:grid = [[1,1],[1,1]] 输出:4
提示:
rows == grid.length
cols == grid[i].length
2 <= rows, cols <= 70
0 <= grid[i][j] <= 100
方法一:动态规划
线性 DP。定义 dp[i][j1][j2]
表示两个机器人从起始点分别走到坐标 (i, j1)
, (i, j2)
的所有路线中,可获得的樱桃数量的最大值。
class Solution:
def cherryPickup(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
dp = [[[0] * n for _ in range(n)] for _ in range(m)]
valid = [[[False] * n for _ in range(n)] for _ in range(m)]
dp[0][0][n - 1] = grid[0][0] + grid[0][n - 1]
valid[0][0][n - 1] = True
for i in range(1, m):
for j1 in range(n):
for j2 in range(n):
t = grid[i][j1]
if j1 != j2:
t += grid[i][j2]
ok = False
for y1 in range(j1 - 1, j1 + 2):
for y2 in range(j2 - 1, j2 + 2):
if 0 <= y1 < n and 0 <= y2 < n and valid[i - 1][y1][y2]:
dp[i][j1][j2] = max(
dp[i][j1][j2], dp[i - 1][y1][y2] + t
)
ok = True
valid[i][j1][j2] = ok
return max(dp[m - 1][j1][j2] for j1 in range(n) for j2 in range(n))
class Solution {
public int cherryPickup(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int[][][] dp = new int[m][n][n];
boolean[][][] valid = new boolean[m][n][n];
dp[0][0][n - 1] = grid[0][0] + grid[0][n - 1];
valid[0][0][n - 1] = true;
for (int i = 1; i < m; ++i) {
for (int j1 = 0; j1 < n; ++j1) {
for (int j2 = 0; j2 < n; ++j2) {
int t = grid[i][j1];
if (j1 != j2) {
t += grid[i][j2];
}
boolean ok = false;
for (int y1 = j1 - 1; y1 <= j1 + 1; ++y1) {
for (int y2 = j2 - 1; y2 <= j2 + 1; ++y2) {
if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && valid[i - 1][y1][y2]) {
dp[i][j1][j2] = Math.max(dp[i][j1][j2], dp[i - 1][y1][y2] + t);
ok = true;
}
}
}
valid[i][j1][j2] = ok;
}
}
}
int ans = 0;
for (int j1 = 0; j1 < n; ++j1) {
for (int j2 = 0; j2 < n; ++j2) {
ans = Math.max(ans, dp[m - 1][j1][j2]);
}
}
return ans;
}
}
class Solution {
public:
int cherryPickup(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
vector<vector<vector<int>>> dp(m, vector<vector<int>>(n, vector<int>(n)));
vector<vector<vector<bool>>> valid(m, vector<vector<bool>>(n, vector<bool>(n)));
dp[0][0][n - 1] = grid[0][0] + grid[0][n - 1];
valid[0][0][n - 1] = true;
for (int i = 1; i < m; ++i) {
for (int j1 = 0; j1 < n; ++j1) {
for (int j2 = 0; j2 < n; ++j2) {
int t = grid[i][j1];
if (j1 != j2) t += grid[i][j2];
bool ok = false;
for (int y1 = j1 - 1; y1 <= j1 + 1; ++y1)
for (int y2 = j2 - 1; y2 <= j2 + 1; ++y2)
if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && valid[i - 1][y1][y2]) {
dp[i][j1][j2] = max(dp[i][j1][j2], dp[i - 1][y1][y2] + t);
ok = true;
}
valid[i][j1][j2] = ok;
}
}
}
int ans = 0;
for (int j1 = 0; j1 < n; ++j1)
for (int j2 = 0; j2 < n; ++j2)
ans = max(ans, dp[m - 1][j1][j2]);
return ans;
}
};
func cherryPickup(grid [][]int) int {
m, n := len(grid), len(grid[0])
dp := make([][][]int, m)
valid := make([][][]bool, m)
for i := range dp {
dp[i] = make([][]int, n)
valid[i] = make([][]bool, n)
for j1 := range dp[i] {
dp[i][j1] = make([]int, n)
valid[i][j1] = make([]bool, n)
}
}
dp[0][0][n-1] = grid[0][0] + grid[0][n-1]
valid[0][0][n-1] = true
for i := 1; i < m; i++ {
for j1 := 0; j1 < n; j1++ {
for j2 := 0; j2 < n; j2++ {
t := grid[i][j1]
if j1 != j2 {
t += grid[i][j2]
}
ok := false
for y1 := j1 - 1; y1 <= j1+1; y1++ {
for y2 := j2 - 1; y2 <= j2+1; y2++ {
if y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && valid[i-1][y1][y2] {
dp[i][j1][j2] = max(dp[i][j1][j2], dp[i-1][y1][y2]+t)
ok = true
}
}
}
valid[i][j1][j2] = ok
}
}
}
ans := 0
for j1 := 0; j1 < n; j1++ {
for j2 := 0; j2 < n; j2++ {
ans = max(ans, dp[m-1][j1][j2])
}
}
return ans
}
func max(a, b int) int {
if a > b {
return a
}
return b
}