Skip to content

Latest commit

 

History

History
186 lines (148 loc) · 5.75 KB

File metadata and controls

186 lines (148 loc) · 5.75 KB

English Version

题目描述

给你一棵有 n 个节点的无向树,节点编号为 0 到 n-1 ,它们中有一些节点有苹果。通过树上的一条边,需要花费 1 秒钟。你从 节点 0 出发,请你返回最少需要多少秒,可以收集到所有苹果,并回到节点 0 。

无向树的边由 edges 给出,其中 edges[i] = [fromi, toi] ,表示有一条边连接 from 和 toi 。除此以外,还有一个布尔数组 hasApple ,其中 hasApple[i] = true 代表节点 i 有一个苹果,否则,节点 i 没有苹果。

 

示例 1:

输入:n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,true,false,true,true,false]
输出:8 
解释:上图展示了给定的树,其中红色节点表示有苹果。一个能收集到所有苹果的最优方案由绿色箭头表示。

示例 2:

输入:n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,true,false,false,true,false]
输出:6
解释:上图展示了给定的树,其中红色节点表示有苹果。一个能收集到所有苹果的最优方案由绿色箭头表示。

示例 3:

输入:n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,false,false,false,false,false]
输出:0

 

提示:

  • 1 <= n <= 10^5
  • edges.length == n-1
  • edges[i].length == 2
  • 0 <= fromi, toi <= n-1
  • fromi < toi
  • hasApple.length == n

解法

方法一:DFS

Python3

class Solution:
    def minTime(self, n: int, edges: List[List[int]], hasApple: List[bool]) -> int:
        def dfs(u, cost):
            if vis[u]:
                return 0
            vis[u] = True
            nxt_cost = 0
            for v in g[u]:
                nxt_cost += dfs(v, 2)
            if not hasApple[u] and nxt_cost == 0:
                return 0
            return cost + nxt_cost

        g = defaultdict(list)
        for u, v in edges:
            g[u].append(v)
            g[v].append(u)
        vis = [False] * n
        return dfs(0, 0)

Java

class Solution {
    public int minTime(int n, int[][] edges, List<Boolean> hasApple) {
        boolean[] vis = new boolean[n];
        List<Integer>[] g = new List[n];
        for (int i = 0; i < n; ++i) {
            g[i] = new ArrayList<>();
        }
        for (int[] e : edges) {
            int u = e[0], v = e[1];
            g[u].add(v);
            g[v].add(u);
        }
        return dfs(0, 0, g, hasApple, vis);
    }

    private int dfs(int u, int cost, List<Integer>[] g, List<Boolean> hasApple, boolean[] vis) {
        if (vis[u]) {
            return 0;
        }
        vis[u] = true;
        int nxtCost = 0;
        for (int v : g[u]) {
            nxtCost += dfs(v, 2, g, hasApple, vis);
        }
        if (!hasApple.get(u) && nxtCost == 0) {
            return 0;
        }
        return cost + nxtCost;
    }
}

C++

class Solution {
public:
    int minTime(int n, vector<vector<int>>& edges, vector<bool>& hasApple) {
        vector<bool> vis(n);
        vector<vector<int>> g(n);
        for (auto& e : edges) {
            int u = e[0], v = e[1];
            g[u].push_back(v);
            g[v].push_back(u);
        }
        return dfs(0, 0, g, hasApple, vis);
    }

    int dfs(int u, int cost, vector<vector<int>>& g, vector<bool>& hasApple, vector<bool>& vis) {
        if (vis[u]) return 0;
        vis[u] = true;
        int nxt = 0;
        for (int& v : g[u]) nxt += dfs(v, 2, g, hasApple, vis);
        if (!hasApple[u] && !nxt) return 0;
        return cost + nxt;
    }
};

Go

func minTime(n int, edges [][]int, hasApple []bool) int {
	vis := make([]bool, n)
	g := make([][]int, n)
	for _, e := range edges {
		u, v := e[0], e[1]
		g[u] = append(g[u], v)
		g[v] = append(g[v], u)
	}
	var dfs func(int, int) int
	dfs = func(u, cost int) int {
		if vis[u] {
			return 0
		}
		vis[u] = true
		nxt := 0
		for _, v := range g[u] {
			nxt += dfs(v, 2)
		}
		if !hasApple[u] && nxt == 0 {
			return 0
		}
		return cost + nxt
	}
	return dfs(0, 0)
}

...