给你数字 k
,请你返回和为 k
的斐波那契数字的最少数目,其中,每个斐波那契数字都可以被使用多次。
斐波那契数字定义为:
- F1 = 1
- F2 = 1
- Fn = Fn-1 + Fn-2 , 其中 n > 2 。
数据保证对于给定的 k
,一定能找到可行解。
示例 1:
输入:k = 7 输出:2 解释:斐波那契数字为:1,1,2,3,5,8,13,…… 对于 k = 7 ,我们可以得到 2 + 5 = 7 。
示例 2:
输入:k = 10 输出:2 解释:对于 k = 10 ,我们可以得到 2 + 8 = 10 。
示例 3:
输入:k = 19 输出:3 解释:对于 k = 19 ,我们可以得到 1 + 5 + 13 = 19 。
提示:
1 <= k <= 10^9
由于斐波那契数特点,数字重用在此题中是一个烟雾弹。举例推导:k = 288
,数列(局部)1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377
,可以由两个 144,或 233 + 55
组成;k = 10
,可以由两个 5 或 8 + 2
组成。
由此可以使用贪心策略,逆向遍历斐波那契数列,进行暴力查找:
FIND-MIN-FIBONACCI-NUMBERS(k)
r = 0
for n in f
if k >= n
k -= n
r++
if k === 0
return res
class Solution:
def findMinFibonacciNumbers(self, k: int) -> int:
def dfs(k):
if k < 2:
return k
a = b = 1
while b <= k:
a, b = b, a + b
return 1 + dfs(k - a)
return dfs(k)
class Solution {
public int findMinFibonacciNumbers(int k) {
if (k < 2) {
return k;
}
int a = 1, b = 1;
while (b <= k) {
b = a + b;
a = b - a;
}
return 1 + findMinFibonacciNumbers(k - a);
}
}
const arr = [
1836311903, 1134903170, 701408733, 433494437, 267914296, 165580141,
102334155, 63245986, 39088169, 24157817, 14930352, 9227465, 5702887,
3524578, 2178309, 1346269, 832040, 514229, 317811, 196418, 121393, 75025,
46368, 28657, 17711, 10946, 6765, 4181, 2584, 1597, 987, 610, 377, 233, 144,
89, 55, 34, 21, 13, 8, 5, 3, 2, 1,
];
function findMinFibonacciNumbers(k: number): number {
let res = 0;
for (const num of arr) {
if (k >= num) {
k -= num;
res++;
if (k === 0) {
break;
}
}
}
return res;
}
const FIB: [i32; 45] = [
1836311903, 1134903170, 701408733, 433494437, 267914296, 165580141, 102334155, 63245986,
39088169, 24157817, 14930352, 9227465, 5702887, 3524578, 2178309, 1346269, 832040, 514229,
317811, 196418, 121393, 75025, 46368, 28657, 17711, 10946, 6765, 4181, 2584, 1597, 987, 610,
377, 233, 144, 89, 55, 34, 21, 13, 8, 5, 3, 2, 1,
];
impl Solution {
pub fn find_min_fibonacci_numbers(mut k: i32) -> i32 {
let mut res = 0;
for &i in FIB.into_iter() {
if k >= i {
k -= i;
res += 1;
if k == 0 {
break;
}
}
}
res
}
}
class Solution {
public:
int findMinFibonacciNumbers(int k) {
if (k < 2) return k;
int a = 1, b = 1;
while (b <= k) {
b = a + b;
a = b - a;
}
return 1 + findMinFibonacciNumbers(k - a);
}
};
func findMinFibonacciNumbers(k int) int {
if k < 2 {
return k
}
a, b := 1, 1
for b <= k {
a, b = b, a+b
}
return 1 + findMinFibonacciNumbers(k-a)
}