You are given a circle represented as (radius, xCenter, yCenter)
and an axis-aligned rectangle represented as (x1, y1, x2, y2)
, where (x1, y1)
are the coordinates of the bottom-left corner, and (x2, y2)
are the coordinates of the top-right corner of the rectangle.
Return true
if the circle and rectangle are overlapped otherwise return false
. In other words, check if there is any point (xi, yi)
that belongs to the circle and the rectangle at the same time.
Example 1:
Input: radius = 1, xCenter = 0, yCenter = 0, x1 = 1, y1 = -1, x2 = 3, y2 = 1 Output: true Explanation: Circle and rectangle share the point (1,0).
Example 2:
Input: radius = 1, xCenter = 1, yCenter = 1, x1 = 1, y1 = -3, x2 = 2, y2 = -1 Output: false
Example 3:
Input: radius = 1, xCenter = 0, yCenter = 0, x1 = -1, y1 = 0, x2 = 0, y2 = 1 Output: true
Constraints:
1 <= radius <= 2000
-104 <= xCenter, yCenter <= 104
-104 <= x1 < x2 <= 104
-104 <= y1 < y2 <= 104
class Solution:
def checkOverlap(
self,
radius: int,
xCenter: int,
yCenter: int,
x1: int,
y1: int,
x2: int,
y2: int,
) -> bool:
dx = dy = 0
if x1 > xCenter:
dx = xCenter - x1
elif x2 < xCenter:
dx = xCenter - x2
if y1 > yCenter:
dy = yCenter - y1
elif y2 < yCenter:
dy = yCenter - y2
return dx * dx + dy * dy <= radius * radius
class Solution {
public boolean checkOverlap(
int radius, int xCenter, int yCenter, int x1, int y1, int x2, int y2) {
int dx = x1 > xCenter ? x1 - xCenter : (x2 < xCenter ? xCenter - x2 : 0);
int dy = y1 > yCenter ? y1 - yCenter : (y2 < yCenter ? yCenter - y2 : 0);
return dx * dx + dy * dy <= radius * radius;
}
}
class Solution {
public:
bool checkOverlap(int radius, int xCenter, int yCenter, int x1, int y1, int x2, int y2) {
int dx = x1 > xCenter ? x1 - xCenter : (x2 < xCenter ? xCenter - x2 : 0);
int dy = y1 > yCenter ? y1 - yCenter : (y2 < yCenter ? yCenter - y2 : 0);
return dx * dx + dy * dy <= radius * radius;
}
};
func checkOverlap(radius int, xCenter int, yCenter int, x1 int, y1 int, x2 int, y2 int) bool {
dx, dy := 0, 0
if x1 > xCenter {
dx = x1 - xCenter
} else if x2 < xCenter {
dx = x2 - xCenter
}
if y1 > yCenter {
dy = y1 - yCenter
} else if y2 < yCenter {
dy = y2 - yCenter
}
return dx*dx+dy*dy <= radius*radius
}