给你一棵二叉搜索树,请你返回一棵 平衡后 的二叉搜索树,新生成的树应该与原来的树有着相同的节点值。如果有多种构造方法,请你返回任意一种。
如果一棵二叉搜索树中,每个节点的两棵子树高度差不超过 1
,我们就称这棵二叉搜索树是 平衡的 。
示例 1:
输入:root = [1,null,2,null,3,null,4,null,null] 输出:[2,1,3,null,null,null,4] 解释:这不是唯一的正确答案,[3,1,4,null,2,null,null] 也是一个可行的构造方案。
示例 2:
输入: root = [2,1,3] 输出: [2,1,3]
提示:
- 树节点的数目在
[1, 104]
范围内。 1 <= Node.val <= 105
先中序遍历获取到升序排列的每个节点值,然后分治构建二叉树。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def balanceBST(self, root: TreeNode) -> TreeNode:
def dfs(root):
if root is None:
return
dfs(root.left)
vals.append(root.val)
dfs(root.right)
def build(i, j):
if i > j:
return None
mid = (i + j) >> 1
root = TreeNode(vals[mid])
root.left = build(i, mid - 1)
root.right = build(mid + 1, j)
return root
vals = []
dfs(root)
return build(0, len(vals) - 1)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List<Integer> vals;
public TreeNode balanceBST(TreeNode root) {
vals = new ArrayList<>();
dfs(root);
return build(0, vals.size() - 1);
}
private void dfs(TreeNode root) {
if (root == null) {
return;
}
dfs(root.left);
vals.add(root.val);
dfs(root.right);
}
private TreeNode build(int i, int j) {
if (i > j) {
return null;
}
int mid = (i + j) >> 1;
TreeNode root = new TreeNode(vals.get(mid));
root.left = build(i, mid - 1);
root.right = build(mid + 1, j);
return root;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> vals;
TreeNode* balanceBST(TreeNode* root) {
dfs(root);
return build(0, vals.size() - 1);
}
void dfs(TreeNode* root) {
if (!root) return;
dfs(root->left);
vals.push_back(root->val);
dfs(root->right);
}
TreeNode* build(int i, int j) {
if (i > j) return nullptr;
int mid = (i + j) >> 1;
TreeNode* root = new TreeNode(vals[mid]);
root->left = build(i, mid - 1);
root->right = build(mid + 1, j);
return root;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func balanceBST(root *TreeNode) *TreeNode {
var vals []int
var dfs func(root *TreeNode)
dfs = func(root *TreeNode) {
if root == nil {
return
}
dfs(root.Left)
vals = append(vals, root.Val)
dfs(root.Right)
}
dfs(root)
var build func(i, j int) *TreeNode
build = func(i, j int) *TreeNode {
if i > j {
return nil
}
mid := (i + j) >> 1
return &TreeNode{vals[mid], build(i, mid-1), build(mid+1, j)}
}
return build(0, len(vals)-1)
}