给你一棵二叉树,它的根为 root
。请你删除 1 条边,使二叉树分裂成两棵子树,且它们子树和的乘积尽可能大。
由于答案可能会很大,请你将结果对 10^9 + 7 取模后再返回。
示例 1:
输入:root = [1,2,3,4,5,6] 输出:110 解释:删除红色的边,得到 2 棵子树,和分别为 11 和 10 。它们的乘积是 110 (11*10)
示例 2:
输入:root = [1,null,2,3,4,null,null,5,6] 输出:90 解释:移除红色的边,得到 2 棵子树,和分别是 15 和 6 。它们的乘积为 90 (15*6)
示例 3:
输入:root = [2,3,9,10,7,8,6,5,4,11,1] 输出:1025
示例 4:
输入:root = [1,1] 输出:1
提示:
- 每棵树最多有
50000
个节点,且至少有2
个节点。 - 每个节点的值在
[1, 10000]
之间。
方法一:DFS
先通过
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxProduct(self, root: Optional[TreeNode]) -> int:
def sum(root):
if root is None:
return 0
return root.val + sum(root.left) + sum(root.right)
def dfs(root):
nonlocal s, ans
if root is None:
return 0
t = root.val + dfs(root.left) + dfs(root.right)
if t < s:
ans = max(ans, t * (s - t))
return t
s = sum(root)
ans = 0
dfs(root)
ans %= (10**9 + 7)
return ans
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private long ans;
private long s;
private static final int MOD = (int) 1e9 + 7;
public int maxProduct(TreeNode root) {
s = sum(root);
dfs(root);
ans %= MOD;
return (int) ans;
}
private long sum(TreeNode root) {
if (root == null) {
return 0;
}
return root.val + sum(root.left) + sum(root.right);
}
private long dfs(TreeNode root) {
if (root == null) {
return 0;
}
long t = root.val + dfs(root.left) + dfs(root.right);
if (t < s) {
ans = Math.max(ans, t * (s - t));
}
return t;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
using ll = long long;
const int MOD = 1e9 + 7;
class Solution {
public:
ll ans;
ll s;
int maxProduct(TreeNode* root) {
s = sum(root);
dfs(root);
ans %= MOD;
return (int) ans;
}
ll sum(TreeNode* root) {
if (!root) return 0;
return root->val + sum(root->left) + sum(root->right);
}
ll dfs(TreeNode* root) {
if (!root) return 0;
ll t = root->val + dfs(root->left) + dfs(root->right);
if (t < s) {
ans = max(ans, t * (s - t));
}
return t;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func maxProduct(root *TreeNode) int {
mod := int(1e9) + 7
var sum func(*TreeNode) int
sum = func(root *TreeNode) int {
if root == nil {
return 0
}
return root.Val + sum(root.Left) + sum(root.Right)
}
s := sum(root)
ans := 0
var dfs func(*TreeNode) int
dfs = func(root *TreeNode) int {
if root == nil {
return 0
}
t := root.Val + dfs(root.Left) + dfs(root.Right)
if t < s {
ans = max(ans, t*(s-t))
}
return t
}
dfs(root)
return ans % mod
}
func max(a, b int) int {
if a > b {
return a
}
return b
}