Skip to content

Latest commit

 

History

History
248 lines (199 loc) · 6.01 KB

File metadata and controls

248 lines (199 loc) · 6.01 KB

English Version

题目描述

给你一棵二叉树,它的根为 root 。请你删除 1 条边,使二叉树分裂成两棵子树,且它们子树和的乘积尽可能大。

由于答案可能会很大,请你将结果对 10^9 + 7 取模后再返回。

 

示例 1:

输入:root = [1,2,3,4,5,6]
输出:110
解释:删除红色的边,得到 2 棵子树,和分别为 11 和 10 。它们的乘积是 110 (11*10)

示例 2:

输入:root = [1,null,2,3,4,null,null,5,6]
输出:90
解释:移除红色的边,得到 2 棵子树,和分别是 15 和 6 。它们的乘积为 90 (15*6)

示例 3:

输入:root = [2,3,9,10,7,8,6,5,4,11,1]
输出:1025

示例 4:

输入:root = [1,1]
输出:1

 

提示:

  • 每棵树最多有 50000 个节点,且至少有 2 个节点。
  • 每个节点的值在 [1, 10000] 之间。

解法

方法一:DFS

先通过 $sum$ 函数求得二叉树所有节点值的和,记为 $s$。然后 $DFS$ 求得以每个节点(除了根节点)作为子树根节点的所有节点值之和,记为 $t$,求得 $t \times (s - t)$ 的最大值,就是答案。注意取模操作。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def maxProduct(self, root: Optional[TreeNode]) -> int:
        def sum(root):
            if root is None:
                return 0
            return root.val + sum(root.left) + sum(root.right)

        def dfs(root):
            nonlocal s, ans
            if root is None:
                return 0
            t = root.val + dfs(root.left) + dfs(root.right)
            if t < s:
                ans = max(ans, t * (s - t))
            return t

        s = sum(root)
        ans = 0
        dfs(root)
        ans %= (10**9 + 7)
        return ans

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private long ans;
    private long s;
    private static final int MOD = (int) 1e9 + 7;

    public int maxProduct(TreeNode root) {
        s = sum(root);
        dfs(root);
        ans %= MOD;
        return (int) ans;
    }

    private long sum(TreeNode root) {
        if (root == null) {
            return 0;
        }
        return root.val + sum(root.left) + sum(root.right);
    }

    private long dfs(TreeNode root) {
        if (root == null) {
            return 0;
        }
        long t = root.val + dfs(root.left) + dfs(root.right);
        if (t < s) {
            ans = Math.max(ans, t * (s - t));
        }
        return t;
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
using ll = long long;
const int MOD = 1e9 + 7;

class Solution {
public:
    ll ans;
    ll s;

    int maxProduct(TreeNode* root) {
        s = sum(root);
        dfs(root);
        ans %= MOD;
        return (int) ans;
    }

    ll sum(TreeNode* root) {
        if (!root) return 0;
        return root->val + sum(root->left) + sum(root->right);
    }

    ll dfs(TreeNode* root) {
        if (!root) return 0;
        ll t = root->val + dfs(root->left) + dfs(root->right);
        if (t < s) {
            ans = max(ans, t * (s - t));
        }
        return t;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func maxProduct(root *TreeNode) int {
	mod := int(1e9) + 7
	var sum func(*TreeNode) int
	sum = func(root *TreeNode) int {
		if root == nil {
			return 0
		}
		return root.Val + sum(root.Left) + sum(root.Right)
	}
	s := sum(root)
	ans := 0
	var dfs func(*TreeNode) int
	dfs = func(root *TreeNode) int {
		if root == nil {
			return 0
		}
		t := root.Val + dfs(root.Left) + dfs(root.Right)
		if t < s {
			ans = max(ans, t*(s-t))
		}
		return t
	}
	dfs(root)
	return ans % mod
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

...