Given 3 positives numbers a
, b
and c
. Return the minimum flips required in some bits of a
and b
to make ( a
OR b
== c
). (bitwise OR operation).
Flip operation consists of change any single bit 1 to 0 or change the bit 0 to 1 in their binary representation.
Example 1:
Input: a = 2, b = 6, c = 5 Output: 3 Explanation: After flips a = 1 , b = 4 , c = 5 such that (a
ORb
==c
)
Example 2:
Input: a = 4, b = 2, c = 7 Output: 1
Example 3:
Input: a = 1, b = 2, c = 3 Output: 0
Constraints:
<li><code>1 <= a <= 10^9</code></li>
<li><code>1 <= b <= 10^9</code></li>
<li><code>1 <= c <= 10^9</code></li>
class Solution:
def minFlips(self, a: int, b: int, c: int) -> int:
ans = 0
for i in range(31):
x, y, z = (a >> i) & 1, (b >> i) & 1, (c >> i) & 1
if (x | y) == z:
continue
if x == 1 and y == 1 and z == 0:
ans += 2
else:
ans += 1
return ans
class Solution {
public int minFlips(int a, int b, int c) {
int ans = 0;
for (int i = 0; i < 31; ++i) {
int x = (a >> i) & 1, y = (b >> i) & 1, z = (c >> i) & 1;
if ((x | y) == z) {
continue;
}
if (x == 1 && y == 1 && z == 0) {
++ans;
}
++ans;
}
return ans;
}
}
class Solution {
public:
int minFlips(int a, int b, int c) {
int ans = 0;
for (int i = 0; i < 31; ++i) {
int x = (a >> i) & 1, y = (b >> i) & 1, z = (c >> i) & 1;
if ((x | y) == z) continue;
if (x == 1 && y == 1 && z == 0) ++ans;
++ans;
}
return ans;
}
};
func minFlips(a int, b int, c int) int {
ans := 0
for i := 0; i < 31; i++ {
x, y, z := (a>>i)&1, (b>>i)&1, (c>>i)&1
if (x | y) == z {
continue
}
if x == 1 && y == 1 && z == 0 {
ans++
}
ans++
}
return ans
}