Skip to content

Latest commit

 

History

History
355 lines (316 loc) · 9.28 KB

File metadata and controls

355 lines (316 loc) · 9.28 KB

中文文档

Description

In an infinite chess board with coordinates from -infinity to +infinity, you have a knight at square [0, 0].

A knight has 8 possible moves it can make, as illustrated below. Each move is two squares in a cardinal direction, then one square in an orthogonal direction.

Return the minimum number of steps needed to move the knight to the square [x, y]. It is guaranteed the answer exists.

 

Example 1:

Input: x = 2, y = 1
Output: 1
Explanation: [0, 0] → [2, 1]

Example 2:

Input: x = 5, y = 5
Output: 4
Explanation: [0, 0] → [2, 1] → [4, 2] → [3, 4] → [5, 5]

 

Constraints:

  • -300 <= x, y <= 300
  • 0 <= |x| + |y| <= 300

Solutions

BFS.

Python3

class Solution:
    def minKnightMoves(self, x: int, y: int) -> int:
        q = deque([(0, 0)])
        ans = 0
        vis = {(0, 0)}
        dirs = ((-2, 1), (-1, 2), (1, 2), (2, 1), (2, -1), (1, -2), (-1, -2), (-2, -1))
        while q:
            for _ in range(len(q)):
                i, j = q.popleft()
                if (i, j) == (x, y):
                    return ans
                for a, b in dirs:
                    c, d = i + a, j + b
                    if (c, d) not in vis:
                        vis.add((c, d))
                        q.append((c, d))
            ans += 1
        return -1

Two-end BFS:

class Solution:
    def minKnightMoves(self, x: int, y: int) -> int:
        def extend(m1, m2, q):
            for _ in range(len(q)):
                i, j = q.popleft()
                step = m1[(i, j)]
                for a, b in ((-2, 1), (-1, 2), (1, 2), (2, 1), (2, -1), (1, -2), (-1, -2), (-2, -1)):
                    x, y = i + a, j + b
                    if (x, y) in m1:
                        continue
                    if (x, y) in m2:
                        return step + 1 + m2[(x, y)]
                    q.append((x, y))
                    m1[(x, y)] = step + 1
            return -1

        if (x, y) == (0, 0):
            return 0
        q1, q2 = deque([(0, 0)]), deque([(x, y)])
        m1, m2 = {(0, 0): 0}, {(x, y): 0}
        while q1 and q2:
            t = extend(m1, m2, q1) if len(q1) <= len(q2) else extend(m2, m1, q2)
            if t != -1:
                return t
        return -1

Java

class Solution {
    public int minKnightMoves(int x, int y) {
        x += 310;
        y += 310;
        int ans = 0;
        Queue<int[]> q = new ArrayDeque<>();
        q.offer(new int[]{310, 310});
        boolean[][] vis = new boolean[700][700];
        vis[310][310] = true;
        int[][] dirs = {{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}};
        while (!q.isEmpty()) {
            for (int k = q.size(); k > 0; --k) {
                int[] p = q.poll();
                if (p[0] == x && p[1] == y) {
                    return ans;
                }
                for (int[] dir : dirs) {
                    int c = p[0] + dir[0];
                    int d = p[1] + dir[1];
                    if (!vis[c][d]) {
                        vis[c][d] = true;
                        q.offer(new int[]{c, d});
                    }
                }
            }
            ++ans;
        }
        return -1;
    }
}

Two-end BFS:

class Solution {
    private int n = 700;

    public int minKnightMoves(int x, int y) {
        if (x == 0 && y == 0) {
            return 0;
        }
        x += 310;
        y += 310;
        Map<Integer, Integer> m1 = new HashMap<>();
        Map<Integer, Integer> m2 = new HashMap<>();
        m1.put(310 * n + 310, 0);
        m2.put(x * n + y, 0);
        Queue<int[]> q1 = new ArrayDeque<>();
        Queue<int[]> q2 = new ArrayDeque<>();
        q1.offer(new int[] {310, 310});
        q2.offer(new int[] {x, y});
        while (!q1.isEmpty() && !q2.isEmpty()) {
            int t = q1.size() <= q2.size() ? extend(m1, m2, q1) : extend(m2, m1, q2);
            if (t != -1) {
                return t;
            }
        }
        return -1;
    }

    private int extend(Map<Integer, Integer> m1, Map<Integer, Integer> m2, Queue<int[]> q) {
        int[][] dirs = {{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}};
        for (int k = q.size(); k > 0; --k) {
            int[] p = q.poll();
            int step = m1.get(p[0] * n + p[1]);
            for (int[] dir : dirs) {
                int x = p[0] + dir[0];
                int y = p[1] + dir[1];
                if (m1.containsKey(x * n + y)) {
                    continue;
                }
                if (m2.containsKey(x * n + y)) {
                    return step + 1 + m2.get(x * n + y);
                }
                m1.put(x * n + y, step + 1);
                q.offer(new int[] {x, y});
            }
        }
        return -1;
    }
}

C++

class Solution {
public:
    int minKnightMoves(int x, int y) {
        x += 310;
        y += 310;
        int ans = 0;
        queue<pair<int, int>> q;
        q.push({310, 310});
        vector<vector<bool>> vis(700, vector<bool>(700));
        vis[310][310] = true;
        vector<vector<int>> dirs = {{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}};
        while (!q.empty()) {
            for (int k = q.size(); k > 0; --k) {
                auto p = q.front();
                q.pop();
                if (p.first == x && p.second == y) return ans;
                for (auto& dir : dirs) {
                    int c = p.first + dir[0], d = p.second + dir[1];
                    if (!vis[c][d]) {
                        vis[c][d] = true;
                        q.push({c, d});
                    }
                }
            }
            ++ans;
        }
        return -1;
    }
};

Two-end BFS:

typedef pair<int, int> PII;

class Solution {
public:
    int n = 700;

    int minKnightMoves(int x, int y) {
        if (x == 0 && y == 0) return 0;
        x += 310;
        y += 310;
        unordered_map<int, int> m1;
        unordered_map<int, int> m2;
        m1[310 * n + 310] = 0;
        m2[x * n + y] = 0;
        queue<PII> q1;
        queue<PII> q2;
        q1.push({310, 310});
        q2.push({x, y});
        while (!q1.empty() && !q2.empty())
        {
            int t = q1.size() <= q2.size() ? extend(m1, m2, q1) : extend(m2, m1, q2);
            if (t != -1) return t;
        }
        return -1;
    }

    int extend(unordered_map<int, int>& m1, unordered_map<int, int>& m2, queue<PII>& q) {
        vector<vector<int>> dirs = {{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}};
        for (int k = q.size(); k > 0; --k)
        {
            auto p = q.front();
            q.pop();
            int i = p.first, j = p.second;
            int step = m1[i * n + j];
            for (auto& dir : dirs)
            {
                int x = i + dir[0], y = j + dir[1];
                if (m1.count(x * n + y)) continue;
                if (m2.count(x * n + y)) return step + 1 + m2[x * n + y];
                m1[x * n + y] = step + 1;
                q.push({x, y});
            }
        }
        return -1;
    }
};

Go

Two-end BFS:

func minKnightMoves(x int, y int) int {
	x, y = x+310, y+310
	ans := 0
	q := [][]int{{310, 310}}
	vis := make([][]bool, 700)
	for i := range vis {
		vis[i] = make([]bool, 700)
	}
	dirs := [][]int{{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}}
	for len(q) > 0 {
		for k := len(q); k > 0; k-- {
			p := q[0]
			q = q[1:]
			if p[0] == x && p[1] == y {
				return ans
			}
			for _, dir := range dirs {
				c, d := p[0]+dir[0], p[1]+dir[1]
				if !vis[c][d] {
					vis[c][d] = true
					q = append(q, []int{c, d})
				}
			}
		}
		ans++
	}
	return -1
}
func minKnightMoves(x int, y int) int {
	if x == 0 && y == 0 {
		return 0
	}
	n := 700
	x, y = x+310, y+310
	q1, q2 := []int{310*700 + 310}, []int{x*n + y}
	m1, m2 := map[int]int{310*700 + 310: 0}, map[int]int{x*n + y: 0}
	dirs := [][]int{{-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}, {-1, -2}, {-2, -1}}
	extend := func() int {
		for k := len(q1); k > 0; k-- {
			p := q1[0]
			q1 = q1[1:]
			i, j := p/n, p%n
			step := m1[i*n+j]
			for _, dir := range dirs {
				x, y := i+dir[0], j+dir[1]
				t := x*n + y
				if _, ok := m1[t]; ok {
					continue
				}
				if v, ok := m2[t]; ok {
					return step + 1 + v
				}
				m1[t] = step + 1
				q1 = append(q1, t)
			}
		}
		return -1
	}
	for len(q1) > 0 && len(q2) > 0 {
		if len(q1) <= len(q2) {
			q1, q2 = q2, q1
			m1, m2 = m2, m1
		}
		t := extend()
		if t != -1 {
			return t
		}
	}
	return -1
}

...