A robot on an infinite XY-plane starts at point (0, 0)
facing north. The robot can receive a sequence of these three possible types of commands
:
-2
: Turn left90
degrees.-1
: Turn right90
degrees.1 <= k <= 9
: Move forwardk
units, one unit at a time.
Some of the grid squares are obstacles
. The ith
obstacle is at grid point obstacles[i] = (xi, yi)
. If the robot runs into an obstacle, then it will instead stay in its current location and move on to the next command.
Return the maximum Euclidean distance that the robot ever gets from the origin squared (i.e. if the distance is 5
, return 25
).
Note:
- North means +Y direction.
- East means +X direction.
- South means -Y direction.
- West means -X direction.
Example 1:
Input: commands = [4,-1,3], obstacles = [] Output: 25 Explanation: The robot starts at (0, 0): 1. Move north 4 units to (0, 4). 2. Turn right. 3. Move east 3 units to (3, 4). The furthest point the robot ever gets from the origin is (3, 4), which squared is 32 + 42 = 25 units away.
Example 2:
Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]] Output: 65 Explanation: The robot starts at (0, 0): 1. Move north 4 units to (0, 4). 2. Turn right. 3. Move east 1 unit and get blocked by the obstacle at (2, 4), robot is at (1, 4). 4. Turn left. 5. Move north 4 units to (1, 8). The furthest point the robot ever gets from the origin is (1, 8), which squared is 12 + 82 = 65 units away.
Example 3:
Input: commands = [6,-1,-1,6], obstacles = [] Output: 36 Explanation: The robot starts at (0, 0): 1. Move north 6 units to (0, 6). 2. Turn right. 3. Turn right. 4. Move south 6 units to (0, 0). The furthest point the robot ever gets from the origin is (0, 6), which squared is 62 = 36 units away.
Constraints:
1 <= commands.length <= 104
commands[i]
is either-2
,-1
, or an integer in the range[1, 9]
.0 <= obstacles.length <= 104
-3 * 104 <= xi, yi <= 3 * 104
- The answer is guaranteed to be less than
231
.
class Solution:
def robotSim(self, commands: List[int], obstacles: List[List[int]]) -> int:
dirs = [[-1, 0], [0, 1], [1, 0], [0, -1]]
s = {(x, y) for x, y in obstacles}
ans, p = 0, 1
x = y = 0
for v in commands:
if v == -2:
p = (p + 3) % 4
elif v == -1:
p = (p + 1) % 4
else:
for _ in range(v):
nx, ny = x + dirs[p][0], y + dirs[p][1]
if (nx, ny) in s:
break
x, y = nx, ny
ans = max(ans, x * x + y * y)
return ans
class Solution {
public int robotSim(int[] commands, int[][] obstacles) {
int[][] dirs = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
Set<String> s = new HashSet<>();
for (int[] v : obstacles) {
s.add(v[0] + "." + v[1]);
}
int ans = 0, p = 1;
int x = 0, y = 0;
for (int v : commands) {
if (v == -2) {
p = (p + 3) % 4;
} else if (v == -1) {
p = (p + 1) % 4;
} else {
while (v-- > 0) {
int nx = x + dirs[p][0], ny = y + dirs[p][1];
if (s.contains(nx + "." + ny)) {
break;
}
x = nx;
y = ny;
ans = Math.max(ans, x * x + y * y);
}
}
}
return ans;
}
}
class Solution {
public:
int robotSim(vector<int>& commands, vector<vector<int>>& obstacles) {
vector<vector<int>> dirs = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
unordered_set<string> s;
for (auto v : obstacles) s.insert(to_string(v[0]) + "." + to_string(v[1]));
int ans = 0, p = 1;
int x = 0, y = 0;
for (int v : commands) {
if (v == -2)
p = (p + 3) % 4;
else if (v == -1)
p = (p + 1) % 4;
else {
while (v--) {
int nx = x + dirs[p][0], ny = y + dirs[p][1];
if (s.count(to_string(nx) + "." + to_string(ny))) break;
x = nx;
y = ny;
ans = max(ans, x * x + y * y);
}
}
}
return ans;
}
};
func robotSim(commands []int, obstacles [][]int) int {
dirs := [][]int{{-1, 0}, {0, 1}, {1, 0}, {0, -1}}
s := map[string]bool{}
for _, v := range obstacles {
t := strconv.Itoa(v[0]) + "." + strconv.Itoa(v[1])
s[t] = true
}
ans, p := 0, 1
x, y := 0, 0
for _, v := range commands {
if v == -2 {
p = (p + 3) % 4
} else if v == -1 {
p = (p + 1) % 4
} else {
for i := 0; i < v; i++ {
nx, ny := x+dirs[p][0], y+dirs[p][1]
t := strconv.Itoa(nx) + "." + strconv.Itoa(ny)
if s[t] {
break
}
x, y = nx, ny
ans = max(ans, x*x+y*y)
}
}
}
return ans
}
func max(a, b int) int {
if a > b {
return a
}
return b
}