Skip to content

Latest commit

 

History

History
168 lines (140 loc) · 4.55 KB

File metadata and controls

168 lines (140 loc) · 4.55 KB

中文文档

Description

Consider all the leaves of a binary tree, from left to right order, the values of those leaves form a leaf value sequence.

For example, in the given tree above, the leaf value sequence is (6, 7, 4, 9, 8).

Two binary trees are considered leaf-similar if their leaf value sequence is the same.

Return true if and only if the two given trees with head nodes root1 and root2 are leaf-similar.

 

Example 1:

Input: root1 = [3,5,1,6,2,9,8,null,null,7,4], root2 = [3,5,1,6,7,4,2,null,null,null,null,null,null,9,8]
Output: true

Example 2:

Input: root1 = [1,2,3], root2 = [1,3,2]
Output: false

 

Constraints:

  • The number of nodes in each tree will be in the range [1, 200].
  • Both of the given trees will have values in the range [0, 200].

Solutions

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def leafSimilar(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
        def dfs(root):
            if root is None:
                return []
            ans = dfs(root.left) + dfs(root.right)
            return ans or [root.val]

        return dfs(root1) == dfs(root2)

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean leafSimilar(TreeNode root1, TreeNode root2) {
        List<Integer> l1 = dfs(root1);
        List<Integer> l2 = dfs(root2);
        return l1.equals(l2);
    }

    private List<Integer> dfs(TreeNode root) {
        if (root == null) {
            return new ArrayList<>();
        }
        List<Integer> ans = dfs(root.left);
        ans.addAll(dfs(root.right));
        if (ans.isEmpty()) {
            ans.add(root.val);
        }
        return ans;
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool leafSimilar(TreeNode* root1, TreeNode* root2) {
        return dfs(root1) == dfs(root2);
    }

    vector<int> dfs(TreeNode* root) {
        if (!root) return {};
        auto ans = dfs(root->left);
        auto right = dfs(root->right);
        ans.insert(ans.end(), right.begin(), right.end());
        if (ans.empty()) ans.push_back(root->val);
        return ans;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func leafSimilar(root1 *TreeNode, root2 *TreeNode) bool {
	var dfs func(*TreeNode) []int
	dfs = func(root *TreeNode) []int {
		if root == nil {
			return []int{}
		}
		ans := dfs(root.Left)
		ans = append(ans, dfs(root.Right)...)
		if len(ans) == 0 {
			ans = append(ans, root.Val)
		}
		return ans
	}
	return reflect.DeepEqual(dfs(root1), dfs(root2))
}

...