Skip to content

Latest commit

 

History

History
113 lines (93 loc) · 2.84 KB

File metadata and controls

113 lines (93 loc) · 2.84 KB

中文文档

Description

You have a long flowerbed in which some of the plots are planted, and some are not. However, flowers cannot be planted in adjacent plots.

Given an integer array flowerbed containing 0's and 1's, where 0 means empty and 1 means not empty, and an integer n, return if n new flowers can be planted in the flowerbed without violating the no-adjacent-flowers rule.

 

Example 1:

Input: flowerbed = [1,0,0,0,1], n = 1
Output: true

Example 2:

Input: flowerbed = [1,0,0,0,1], n = 2
Output: false

 

Constraints:

  • 1 <= flowerbed.length <= 2 * 104
  • flowerbed[i] is 0 or 1.
  • There are no two adjacent flowers in flowerbed.
  • 0 <= n <= flowerbed.length

Solutions

Python3

class Solution:
    def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool:
        flowerbed = [0] + flowerbed + [0]
        for i in range(1, len(flowerbed) - 1):
            if sum(flowerbed[i - 1 : i + 2]) == 0:
                flowerbed[i] = 1
                n -= 1
        return n <= 0

Java

class Solution {
    public boolean canPlaceFlowers(int[] flowerbed, int n) {
        int m = flowerbed.length;
        for (int i = 0; i < m; ++i) {
            int l = i == 0 ? 0 : flowerbed[i - 1];
            int r = i == m - 1 ? 0 : flowerbed[i + 1];
            if (l + flowerbed[i] + r == 0) {
                flowerbed[i] = 1;
                --n;
            }
        }
        return n <= 0;
    }
}

C++

class Solution {
public:
    bool canPlaceFlowers(vector<int>& flowerbed, int n) {
        int m = flowerbed.size();
        for (int i = 0; i < m; ++i) {
            int l = i == 0 ? 0 : flowerbed[i - 1];
            int r = i == m - 1 ? 0 : flowerbed[i + 1];
            if (l + flowerbed[i] + r == 0) {
                flowerbed[i] = 1;
                --n;
            }
        }
        return n <= 0;
    }
};

Go

func canPlaceFlowers(flowerbed []int, n int) bool {
	m := len(flowerbed)
	for i, v := range flowerbed {
		l, r := 0, 0
		if i > 0 {
			l = flowerbed[i-1]
		}
		if i < m-1 {
			r = flowerbed[i+1]
		}
		if l+v+r == 0 {
			flowerbed[i] = 1
			n--
		}
	}
	return n <= 0
}

...