Given two strings word1
and word2
, return the minimum number of steps required to make word1
and word2
the same.
In one step, you can delete exactly one character in either string.
Example 1:
Input: word1 = "sea", word2 = "eat" Output: 2 Explanation: You need one step to make "sea" to "ea" and another step to make "eat" to "ea".
Example 2:
Input: word1 = "leetcode", word2 = "etco" Output: 4
Constraints:
1 <= word1.length, word2.length <= 500
word1
andword2
consist of only lowercase English letters.
Dynamic programming.
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
m, n = len(word1), len(word2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
dp[i][0] = i
for j in range(1, n + 1):
dp[0][j] = j
for i in range(1, m + 1):
for j in range(1, n + 1):
if word1[i - 1] == word2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1])
return dp[-1][-1]
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length(), n = word2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; ++i) {
dp[i][0] = i;
}
for (int j = 1; j <= n; ++j) {
dp[0][j] = j;
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = 1 + Math.min(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[m][n];
}
}
class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
for (int i = 1; i <= m; ++i) dp[i][0] = i;
for (int j = 1; j <= n; ++j) dp[0][j] = j;
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (word1[i - 1] == word2[j - 1])
dp[i][j] = dp[i - 1][j - 1];
else
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1]);
}
}
return dp[m][n];
}
};
func minDistance(word1 string, word2 string) int {
m, n := len(word1), len(word2)
dp := make([][]int, m+1)
for i := range dp {
dp[i] = make([]int, n+1)
dp[i][0] = i
}
for j := range dp[0] {
dp[0][j] = j
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
if word1[i-1] == word2[j-1] {
dp[i][j] = dp[i-1][j-1]
} else {
dp[i][j] = 1 + min(dp[i-1][j], dp[i][j-1])
}
}
}
return dp[m][n]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
function minDistance(word1: string, word2: string): number {
const m = word1.length;
const n = word2.length;
const dp = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
for (let i = 1; i <= m; i++) {
for (let j = 1; j <= n; j++) {
if (word1[i - 1] === word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
const max = dp[m][n];
return m - max + n - max;
}
impl Solution {
pub fn min_distance(word1: String, word2: String) -> i32 {
let (m, n) = (word1.len(), word2.len());
let (word1, word2) = (word1.as_bytes(), word2.as_bytes());
let mut dp = vec![vec![0; n + 1]; m + 1];
for i in 1..=m {
for j in 1..=n {
dp[i][j] = if word1[i - 1] == word2[j - 1] {
dp[i - 1][j - 1] + 1
} else {
dp[i - 1][j].max(dp[i][j - 1])
}
}
}
let max = dp[m][n];
((m - max) + (n - max)) as i32
}
}