中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
- void addNum(int num) - 从数据流中添加一个整数到数据结构中。
- double findMedian() - 返回目前所有元素的中位数。
示例:
addNum(1) addNum(2) findMedian() -> 1.5 addNum(3) findMedian() -> 2
进阶:
- 如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法?
- 如果数据流中 99% 的整数都在 0 到 100 范围内,你将如何优化你的算法?
方法一:优先队列(双堆)
创建大根堆、小根堆,其中:大根堆存放较小的一半元素,小根堆存放较大的一半元素。
添加元素时,先放入小根堆,然后将小根堆对顶元素弹出并放入大根堆(使得大根堆个数多
取中位数时,若大根堆元素较多,取大根堆堆顶,否则取两堆顶元素和的平均值。
时间复杂度分析:
每次添加元素的时间复杂度为
class MedianFinder:
def __init__(self):
"""
initialize your data structure here.
"""
self.h1 = []
self.h2 = []
def addNum(self, num: int) -> None:
heappush(self.h1, num)
heappush(self.h2, -heappop(self.h1))
if len(self.h2) - len(self.h1) > 1:
heappush(self.h1, -heappop(self.h2))
def findMedian(self) -> float:
if len(self.h2) > len(self.h1):
return -self.h2[0]
return (self.h1[0] - self.h2[0]) / 2
# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()
class MedianFinder {
private PriorityQueue<Integer> q1 = new PriorityQueue<>();
private PriorityQueue<Integer> q2 = new PriorityQueue<>(Collections.reverseOrder());
/** initialize your data structure here. */
public MedianFinder() {
}
public void addNum(int num) {
q1.offer(num);
q2.offer(q1.poll());
if (q2.size() - q1.size() > 1) {
q1.offer(q2.poll());
}
}
public double findMedian() {
if (q2.size() > q1.size()) {
return q2.peek();
}
return (q1.peek() + q2.peek()) * 1.0 / 2;
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {
}
void addNum(int num) {
q1.push(num);
q2.push(q1.top());
q1.pop();
if (q2.size() - q1.size() > 1) {
q1.push(q2.top());
q2.pop();
}
}
double findMedian() {
if (q2.size() > q1.size()) {
return q2.top();
}
return (double) (q1.top() + q2.top()) / 2;
}
private:
priority_queue<int, vector<int>, greater<int>> q1;
priority_queue<int> q2;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder* obj = new MedianFinder();
* obj->addNum(num);
* double param_2 = obj->findMedian();
*/
type MedianFinder struct {
q1 hp
q2 hp
}
/** initialize your data structure here. */
func Constructor() MedianFinder {
return MedianFinder{hp{}, hp{}}
}
func (this *MedianFinder) AddNum(num int) {
heap.Push(&this.q1, num)
heap.Push(&this.q2, -heap.Pop(&this.q1).(int))
if this.q2.Len()-this.q1.Len() > 1 {
heap.Push(&this.q1, -heap.Pop(&this.q2).(int))
}
}
func (this *MedianFinder) FindMedian() float64 {
if this.q2.Len() > this.q1.Len() {
return -float64(this.q2.IntSlice[0])
}
return float64(this.q1.IntSlice[0]-this.q2.IntSlice[0]) / 2.0
}
/**
* Your MedianFinder object will be instantiated and called as such:
* obj := Constructor();
* obj.AddNum(num);
* param_2 := obj.FindMedian();
*/
type hp struct{ sort.IntSlice }
func (h hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
func (h *hp) Push(v interface{}) { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() interface{} {
a := h.IntSlice
v := a[len(a)-1]
h.IntSlice = a[:len(a)-1]
return v
}
/**
* initialize your data structure here.
*/
var MedianFinder = function () {
this.val = [];
};
/**
* @param {number} num
* @return {void}
*/
MedianFinder.prototype.addNum = function (num) {
let left = 0;
let right = this.val.length;
while (left < right) {
let mid = left + ~~((right - left) / 2);
if (num > this.val[mid]) {
left = mid + 1;
} else {
right = mid;
}
}
this.val.splice(left, 0, num);
};
/**
* @return {number}
*/
MedianFinder.prototype.findMedian = function () {
let mid = ~~(this.val.length / 2);
return this.val.length % 2
? this.val[mid]
: (this.val[mid - 1] + this.val[mid]) / 2;
};
class MedianFinder {
private nums: number[];
constructor() {
this.nums = [];
}
addNum(num: number): void {
const { nums } = this;
let l = 0;
let r = nums.length;
while (l < r) {
const mid = (l + r) >>> 1;
if (nums[mid] < num) {
l = mid + 1;
} else {
r = mid;
}
}
nums.splice(l, 0, num);
}
findMedian(): number {
const { nums } = this;
const n = nums.length;
if ((n & 1) === 1) {
return nums[n >> 1];
}
return (nums[n >> 1] + nums[(n >> 1) - 1]) / 2;
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* var obj = new MedianFinder()
* obj.addNum(num)
* var param_2 = obj.findMedian()
*/
struct MedianFinder {
nums: Vec<i32>,
}
/**
* `&self` means the method takes an immutable reference.
* If you need a mutable reference, change it to `&mut self` instead.
*/
impl MedianFinder {
/** initialize your data structure here. */
fn new() -> Self {
Self { nums: Vec::new() }
}
fn add_num(&mut self, num: i32) {
let mut l = 0;
let mut r = self.nums.len();
while l < r {
let mid = l + r >> 1;
if self.nums[mid] < num {
l = mid + 1;
} else {
r = mid;
}
}
self.nums.insert(l, num);
}
fn find_median(&self) -> f64 {
let n = self.nums.len();
if (n & 1) == 1 {
return f64::from(self.nums[n >> 1]);
}
f64::from(self.nums[n >> 1] + self.nums[(n >> 1) - 1]) / 2.0
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* let obj = MedianFinder::new();
* obj.add_num(num);
* let ret_2: f64 = obj.find_median();
*/
public class MedianFinder {
private List<int> nums;
private int curIndex;
/** initialize your data structure here. */
public MedianFinder() {
nums = new List<int>();
}
private int FindIndex(int val) {
int left = 0;
int right = nums.Count - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (val > nums[mid]) {
left = mid + 1;
} else {
right = mid - 1;
}
}
return left;
}
public void AddNum(int num) {
if (nums.Count == 0) {
nums.Add(num);
curIndex = 0;
} else {
curIndex = FindIndex(num);
if (curIndex == nums.Count) {
nums.Add(num);
} else {
nums.Insert(curIndex, num);
}
}
}
public double FindMedian() {
if (nums.Count % 2 == 1) {
return (double)nums[nums.Count / 2];
} else {
if (nums.Count == 0) {
return 0;
} else {
return (double) (nums[nums.Count / 2 - 1] + nums[nums.Count / 2]) / 2;
}
}
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.AddNum(num);
* double param_2 = obj.FindMedian();
*/