给你 二维 平面上两个 由直线构成且边与坐标轴平行/垂直 的矩形,请你计算并返回两个矩形覆盖的总面积。
每个矩形由其 左下 顶点和 右上 顶点坐标表示:
- 第一个矩形由其左下顶点
(ax1, ay1)
和右上顶点(ax2, ay2)
定义。 - 第二个矩形由其左下顶点
(bx1, by1)
和右上顶点(bx2, by2)
定义。
示例 1:
输入:ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2 输出:45
示例 2:
输入:ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2 输出:16
提示:
-104 <= ax1, ay1, ax2, ay2, bx1, by1, bx2, by2 <= 104
计算重叠部分的面积,注意考虑没有重叠的情况
class Solution:
def computeArea(
self,
ax1: int,
ay1: int,
ax2: int,
ay2: int,
bx1: int,
by1: int,
bx2: int,
by2: int,
) -> int:
a = (ax2 - ax1) * (ay2 - ay1)
b = (bx2 - bx1) * (by2 - by1)
width = min(ax2, bx2) - max(ax1, bx1)
height = min(ay2, by2) - max(ay1, by1)
return a + b - max(height, 0) * max(width, 0)
class Solution {
public int computeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) {
int a = (ax2 - ax1) * (ay2 - ay1);
int b = (bx2 - bx1) * (by2 - by1);
int width = Math.min(ax2, bx2) - Math.max(ax1, bx1);
int height = Math.min(ay2, by2) - Math.max(ay1, by1);
return a + b - Math.max(height, 0) * Math.max(width, 0);
}
}
class Solution {
public:
int computeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) {
int a = (ax2 - ax1) * (ay2 - ay1);
int b = (bx2 - bx1) * (by2 - by1);
int width = min(ax2, bx2) - max(ax1, bx1);
int height = min(ay2, by2) - max(ay1, by1);
return a + b - max(height, 0) * max(width, 0);
}
};
func computeArea(ax1 int, ay1 int, ax2 int, ay2 int, bx1 int, by1 int, bx2 int, by2 int) int {
a := (ax2 - ax1) * (ay2 - ay1)
b := (bx2 - bx1) * (by2 - by1)
width := min(ax2, bx2) - max(ax1, bx1)
height := min(ay2, by2) - max(ay1, by1)
return a + b - max(height, 0)*max(width, 0)
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}