Skip to content

Latest commit

 

History

History
139 lines (106 loc) · 3.5 KB

File metadata and controls

139 lines (106 loc) · 3.5 KB

English Version

题目描述

给你 二维 平面上两个 由直线构成且边与坐标轴平行/垂直 的矩形,请你计算并返回两个矩形覆盖的总面积。

每个矩形由其 左下 顶点和 右上 顶点坐标表示:

  • 第一个矩形由其左下顶点 (ax1, ay1) 和右上顶点 (ax2, ay2) 定义。
  • 第二个矩形由其左下顶点 (bx1, by1) 和右上顶点 (bx2, by2) 定义。

 

示例 1:

Rectangle Area

输入:ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2
输出:45

示例 2:

输入:ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2
输出:16

 

提示:

  • -104 <= ax1, ay1, ax2, ay2, bx1, by1, bx2, by2 <= 104

解法

计算重叠部分的面积,注意考虑没有重叠的情况

Python3

class Solution:
    def computeArea(
        self,
        ax1: int,
        ay1: int,
        ax2: int,
        ay2: int,
        bx1: int,
        by1: int,
        bx2: int,
        by2: int,
    ) -> int:
        a = (ax2 - ax1) * (ay2 - ay1)
        b = (bx2 - bx1) * (by2 - by1)
        width = min(ax2, bx2) - max(ax1, bx1)
        height = min(ay2, by2) - max(ay1, by1)
        return a + b - max(height, 0) * max(width, 0)

Java

class Solution {
    public int computeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) {
        int a = (ax2 - ax1) * (ay2 - ay1);
        int b = (bx2 - bx1) * (by2 - by1);
        int width = Math.min(ax2, bx2) - Math.max(ax1, bx1);
        int height = Math.min(ay2, by2) - Math.max(ay1, by1);
        return a + b - Math.max(height, 0) * Math.max(width, 0);
    }
}

C++

class Solution {
public:
    int computeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) {
        int a = (ax2 - ax1) * (ay2 - ay1);
        int b = (bx2 - bx1) * (by2 - by1);
        int width = min(ax2, bx2) - max(ax1, bx1);
        int height = min(ay2, by2) - max(ay1, by1);
        return a + b - max(height, 0) * max(width, 0);
    }
};

Go

func computeArea(ax1 int, ay1 int, ax2 int, ay2 int, bx1 int, by1 int, bx2 int, by2 int) int {
	a := (ax2 - ax1) * (ay2 - ay1)
	b := (bx2 - bx1) * (by2 - by1)
	width := min(ax2, bx2) - max(ax1, bx1)
	height := min(ay2, by2) - max(ay1, by1)
	return a + b - max(height, 0)*max(width, 0)
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

...