Given the root
of a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.
Example 1:
Input: root = [1,2,3,null,5,null,4] Output: [1,3,4]
Example 2:
Input: root = [1,null,3] Output: [1,3]
Example 3:
Input: root = [] Output: []
Constraints:
- The number of nodes in the tree is in the range
[0, 100]
. -100 <= Node.val <= 100
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rightSideView(self, root: TreeNode) -> List[int]:
ans = []
if root is None:
return ans
q = deque([root])
while q:
ans.append(q[0].val)
for i in range(len(q), 0, -1):
node = q.popleft()
if node.right:
q.append(node.right)
if node.left:
q.append(node.left)
return ans
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> rightSideView(TreeNode root) {
List<Integer> ans = new ArrayList<>();
if (root == null) {
return ans;
}
Deque<TreeNode> q = new LinkedList<>();
q.offerLast(root);
while (!q.isEmpty()) {
ans.add(q.peekFirst().val);
for (int i = q.size(); i > 0; --i) {
TreeNode node = q.pollFirst();
if (node.right != null) {
q.offerLast(node.right);
}
if (node.left != null) {
q.offerLast(node.left);
}
}
}
return ans;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
vector<int> ans;
if (!root) return ans;
queue<TreeNode*> q {{root}};
while (!q.empty()) {
ans.push_back(q.front()->val);
for (int i = q.size(); i > 0; --i) {
TreeNode* node = q.front();
q.pop();
if (node->right) q.push(node->right);
if (node->left) q.push(node->left);
}
}
return ans;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func rightSideView(root *TreeNode) []int {
var ans []int
if root == nil {
return ans
}
q := []*TreeNode{root}
for len(q) > 0 {
ans = append(ans, q[0].Val)
for i := len(q); i > 0; i-- {
node := q[0]
q = q[1:]
if node.Right != nil {
q = append(q, node.Right)
}
if node.Left != nil {
q = append(q, node.Left)
}
}
}
return ans
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function rightSideView(root: TreeNode | null): number[] {
const res = [];
if (root == null) {
return res;
}
const queue = [root];
while (queue.length !== 0) {
const n = queue.length;
res.push(queue[n - 1].val);
for (let i = 0; i < n; i++) {
const { left, right } = queue.shift();
left && queue.push(left);
right && queue.push(right);
}
}
return res;
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
use std::collections::VecDeque;
impl Solution {
pub fn right_side_view(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> {
let mut res = vec![];
if root.is_none() {
return res;
}
let mut q = VecDeque::new();
q.push_back(root);
while !q.is_empty() {
let n = q.len();
res.push(q[n - 1].as_ref().unwrap().borrow().val);
for _ in 0..n {
if let Some(node) = q.pop_front().unwrap() {
let mut node = node.borrow_mut();
if node.left.is_some() {
q.push_back(node.left.take());
}
if node.right.is_some() {
q.push_back(node.right.take());
}
}
}
}
res
}
}