Given an integer n
, return the number of trailing zeroes in n!
.
Note that n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1
.
Example 1:
Input: n = 3 Output: 0 Explanation: 3! = 6, no trailing zero.
Example 2:
Input: n = 5 Output: 1 Explanation: 5! = 120, one trailing zero.
Example 3:
Input: n = 0 Output: 0
Constraints:
0 <= n <= 104
Follow up: Could you write a solution that works in logarithmic time complexity?
class Solution:
def trailingZeroes(self, n: int) -> int:
ans = 0
while n:
n //= 5
ans += n
return ans
class Solution {
public int trailingZeroes(int n) {
int ans = 0;
while (n > 0) {
n /= 5;
ans += n;
}
return ans;
}
}
function trailingZeroes(n: number): number {
let ans = 0;
while (n > 0) {
n = Math.floor(n / 5);
ans += n;
}
return ans;
}
class Solution {
public:
int trailingZeroes(int n) {
int ans = 0;
for (int i = 5; i <= n; i *= 5) ans += n / i;
return ans;
}
};
func trailingZeroes(n int) int {
ans := 0
for n > 0 {
n /= 5
ans += n
}
return ans
}