给定两个整数数组 preorder
和 inorder
,其中 preorder
是二叉树的先序遍历, inorder
是同一棵树的中序遍历,请构造二叉树并返回其根节点。
示例 1:
输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7] 输出: [3,9,20,null,null,15,7]
示例 2:
输入: preorder = [-1], inorder = [-1] 输出: [-1]
提示:
1 <= preorder.length <= 3000
inorder.length == preorder.length
-3000 <= preorder[i], inorder[i] <= 3000
preorder
和inorder
均 无重复 元素inorder
均出现在preorder
preorder
保证 为二叉树的前序遍历序列inorder
保证 为二叉树的中序遍历序列
方法一:递归
前序序列的第一个结点
通过左右子树的区间,可以计算出左、右子树节点的个数,假设为
递归求解即可。
前序遍历:先遍历根节点,再遍历左右子树;中序遍历:先遍历左子树,再遍历根节点,最后遍历右子树。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
if not preorder:
return None
v = preorder[0]
root = TreeNode(val=v)
i = inorder.index(v)
root.left = self.buildTree(preorder[1 : 1 + i], inorder[:i])
root.right = self.buildTree(preorder[1 + i :], inorder[i + 1 :])
return root
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
def dfs(i, j, n):
if n <= 0:
return None
v = preorder[i]
k = d[v]
root = TreeNode(v)
root.left = dfs(i + 1, j, k - j)
root.right = dfs(i + 1 + k - j, k + 1, n - k + j - 1)
return root
d = {v: i for i, v in enumerate(inorder)}
return dfs(0, 0, len(preorder))
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private Map<Integer, Integer> indexes = new HashMap<>();
public TreeNode buildTree(int[] preorder, int[] inorder) {
for (int i = 0; i < inorder.length; ++i) {
indexes.put(inorder[i], i);
}
return dfs(preorder, inorder, 0, 0, preorder.length);
}
private TreeNode dfs(int[] preorder, int[] inorder, int i, int j, int n) {
if (n <= 0) {
return null;
}
int v = preorder[i];
int k = indexes.get(v);
TreeNode root = new TreeNode(v);
root.left = dfs(preorder, inorder, i + 1, j, k - j);
root.right = dfs(preorder, inorder, i + 1 + k - j, k + 1, n - k + j - 1);
return root;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
unordered_map<int, int> indexes;
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
for (int i = 0; i < inorder.size(); ++i) indexes[inorder[i]] = i;
return dfs(preorder, inorder, 0, 0, inorder.size());
}
TreeNode* dfs(vector<int>& preorder, vector<int>& inorder, int i, int j, int n) {
if (n <= 0) return nullptr;
int v = preorder[i];
int k = indexes[v];
TreeNode* root = new TreeNode(v);
root->left = dfs(preorder, inorder, i + 1, j, k - j);
root->right = dfs(preorder, inorder, i + 1 + k - j, k + 1, n - k + j - 1);
return root;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func buildTree(preorder []int, inorder []int) *TreeNode {
indexes := make(map[int]int)
for i, v := range inorder {
indexes[v] = i
}
var dfs func(i, j, n int) *TreeNode
dfs = func(i, j, n int) *TreeNode {
if n <= 0 {
return nil
}
v := preorder[i]
k := indexes[v]
root := &TreeNode{Val: v}
root.Left = dfs(i+1, j, k-j)
root.Right = dfs(i+1+k-j, k+1, n-k+j-1)
return root
}
return dfs(0, 0, len(inorder))
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function buildTree(preorder: number[], inorder: number[]): TreeNode | null {
const n = preorder.length;
if (n === 0) {
return null;
}
const val = preorder[0];
const index = inorder.indexOf(val);
return new TreeNode(
val,
buildTree(preorder.slice(1, index + 1), inorder.slice(0, index)),
buildTree(preorder.slice(index + 1), inorder.slice(index + 1)),
);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
fn to_tree(preorder: &[i32], inorder: &[i32]) -> Option<Rc<RefCell<TreeNode>>> {
if preorder.is_empty() {
return None;
}
let val = preorder[0];
let index = inorder.iter().position(|&v| v == val).unwrap();
Some(Rc::new(RefCell::new(TreeNode {
val,
left: Self::to_tree(&preorder[1..index + 1], &inorder[..index]),
right: Self::to_tree(&preorder[index + 1..], &inorder[index + 1..]),
})))
}
pub fn build_tree(preorder: Vec<i32>, inorder: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
Self::to_tree(&preorder[..], &inorder[..])
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {number[]} preorder
* @param {number[]} inorder
* @return {TreeNode}
*/
var buildTree = function (preorder, inorder) {
function dfs(i, j, n) {
if (n <= 0) {
return null;
}
const v = preorder[i];
const k = d[v];
const root = new TreeNode(v);
root.left = dfs(i + 1, j, k - j);
root.right = dfs(i + 1 + k - j, k + 1, n - k + j - 1);
return root;
}
const d = new Map();
for (const [i, v] of inorder.entries()) {
d[v] = i;
}
return dfs(0, 0, inorder.length);
};