Given two strings word1
and word2
, return the minimum number of operations required to convert word1
to word2
.
You have the following three operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros" Output: 3 Explanation: horse -> rorse (replace 'h' with 'r') rorse -> rose (remove 'r') rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution" Output: 5 Explanation: intention -> inention (remove 't') inention -> enention (replace 'i' with 'e') enention -> exention (replace 'n' with 'x') exention -> exection (replace 'n' with 'c') exection -> execution (insert 'u')
Constraints:
0 <= word1.length, word2.length <= 500
word1
andword2
consist of lowercase English letters.
Dynamic programming.
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
m, n = len(word1), len(word2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(m + 1):
dp[i][0] = i
for j in range(n + 1):
dp[0][j] = j
for i in range(1, m + 1):
for j in range(1, n + 1):
if word1[i - 1] == word2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1
return dp[-1][-1]
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length(), n = word2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 0; i <= m; ++i) {
dp[i][0] = i;
}
for (int j = 0; j <= n; ++j) {
dp[0][j] = j;
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[m][n];
}
}
class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
for (int i = 0; i <= m; ++i) {
dp[i][0] = i;
}
for (int j = 0; j <= n; ++j) {
dp[0][j] = j;
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[m][n];
}
};
func minDistance(word1 string, word2 string) int {
m, n := len(word1), len(word2)
dp := make([][]int, m+1)
for i := 0; i <= m; i++ {
dp[i] = make([]int, n+1)
dp[i][0] = i
}
for j := 0; j <= n; j++ {
dp[0][j] = j
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
if word1[i-1] == word2[j-1] {
dp[i][j] = dp[i-1][j-1]
} else {
dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1
}
}
}
return dp[m][n]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}