整数数组 nums
按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums
在预先未知的某个下标 k
(0 <= k < nums.length
)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7]
在下标 3
处经旋转后可能变为 [4,5,6,7,0,1,2]
。
给你 旋转后 的数组 nums
和一个整数 target
,如果 nums
中存在这个目标值 target
,则返回它的下标,否则返回 -1
。
你必须设计一个时间复杂度为 O(log n)
的算法解决此问题。
示例 1:
输入:nums = [4,5,6,7,0,1,2]
, target = 0
输出:4
示例 2:
输入:nums = [4,5,6,7,0,1,2]
, target = 3
输出:-1
示例 3:
输入:nums = [1], target = 0 输出:-1
提示:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
nums
中的每个值都 独一无二- 题目数据保证
nums
在预先未知的某个下标上进行了旋转 -104 <= target <= 104
方法一:二分查找
我们使用二分,将数组分割成 [left, mid]
, [mid + 1, right]
两部分,这时候可以发现,其中有一部分一定是有序的。
因此,我们可以根据有序的那一部分,判断 target
是否在这一部分中:
- 若
[0, mid]
范围内的元素构成有序数组:- 若满足
nums[0] <= target <= nums[mid]
,那么我们搜索范围可以缩小为[left, mid]
; - 否则,在
[mid + 1, right]
中查找;
- 若满足
- 若
[mid + 1, n - 1]
范围内的元素构成有序数组:- 若满足
nums[mid] < target <= nums[n - 1]
,那么我们搜索范围可以缩小为[mid + 1, right]
; - 否则,在
[left, mid]
中查找。
- 若满足
二分查找终止条件是 left >= right
,若结束后发现 nums[left]
与 target
不等,说明数组中不存在值为 target
的元素,返回 -1,否则返回下标 left。
class Solution:
def search(self, nums: List[int], target: int) -> int:
n = len(nums)
left, right = 0, n - 1
while left < right:
mid = (left + right) >> 1
if nums[0] <= nums[mid]:
if nums[0] <= target <= nums[mid]:
right = mid
else:
left = mid + 1
else:
if nums[mid] < target <= nums[n - 1]:
left = mid + 1
else:
right = mid
return left if nums[left] == target else -1
class Solution {
public int search(int[] nums, int target) {
int n = nums.length;
int left = 0, right = n - 1;
while (left < right) {
int mid = (left + right) >> 1;
if (nums[0] <= nums[mid]) {
if (nums[0] <= target && target <= nums[mid]) {
right = mid;
} else {
left = mid + 1;
}
} else {
if (nums[mid] < target && target <= nums[n - 1]) {
left = mid + 1;
} else {
right = mid;
}
}
}
return nums[left] == target ? left : -1;
}
}
class Solution {
public:
int search(vector<int>& nums, int target) {
int n = nums.size();
int left = 0, right = n - 1;
while (left < right) {
int mid = (left + right) >> 1;
if (nums[0] <= nums[mid]) {
if (nums[0] <= target && target <= nums[mid])
right = mid;
else
left = mid + 1;
} else {
if (nums[mid] < target && target <= nums[n - 1])
left = mid + 1;
else
right = mid;
}
}
return nums[left] == target ? left : -1;
}
};
func search(nums []int, target int) int {
n := len(nums)
left, right := 0, n-1
for left < right {
mid := (left + right) >> 1
if nums[0] <= nums[mid] {
if nums[0] <= target && target <= nums[mid] {
right = mid
} else {
left = mid + 1
}
} else {
if nums[mid] < target && target <= nums[n-1] {
left = mid + 1
} else {
right = mid
}
}
}
if nums[left] == target {
return left
}
return -1
}
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var search = function (nums, target) {
const n = nums.length;
let left = 0,
right = n - 1;
while (left < right) {
const mid = (left + right) >> 1;
if (nums[0] <= nums[mid]) {
if (nums[0] <= target && target <= nums[mid]) {
right = mid;
} else {
left = mid + 1;
}
} else {
if (nums[mid] < target && target <= nums[n - 1]) {
left = mid + 1;
} else {
right = mid;
}
}
}
return nums[left] == target ? left : -1;
};
impl Solution {
pub fn search(nums: Vec<i32>, target: i32) -> i32 {
let mut l = 0;
let mut r = nums.len() - 1;
while l <= r {
let mid = l + r >> 1;
if nums[mid] == target {
return mid as i32;
}
if nums[l] <= nums[mid] {
if target < nums[mid] && target >= nums[l] {
r = mid - 1;
} else {
l = mid + 1;
}
} else {
if target > nums[mid] && target <= nums[r] {
l = mid + 1;
} else {
r = mid - 1;
}
}
}
-1
}
}
function search(nums: number[], target: number): number {
const n = nums.length;
let left = 0,
right = n - 1;
while (left < right) {
const mid = (left + right) >> 1;
if (nums[0] <= nums[mid]) {
if (nums[0] <= target && target <= nums[mid]) {
right = mid;
} else {
left = mid + 1;
}
} else {
if (nums[mid] < target && target <= nums[n - 1]) {
left = mid + 1;
} else {
right = mid;
}
}
}
return nums[left] == target ? left : -1;
}