给定一个字符串 s
,请将 s
分割成一些子串,使每个子串都是回文串。
返回符合要求的 最少分割次数 。
示例 1:
输入:s = "aab" 输出:1 解释:只需一次分割就可将 s 分割成 ["aa","b"] 这样两个回文子串。
示例 2:
输入:s = "a" 输出:0
示例 3:
输入:s = "ab" 输出:1
提示:
1 <= s.length <= 2000
s
仅由小写英文字母组成
注意:本题与主站 132 题相同: https://leetcode.cn/problems/palindrome-partitioning-ii/
两次 dp,dp1[i][j]
表示 i ~ j 的子串是否是回文,可以参考 5. 最长回文子串。dp2[i]
表示以 i 结尾的子串最少需要分割几次,如果本来就是回文串(dp[0][i] == true
)就不需要分割,否则枚举分割点 j
class Solution:
def minCut(self, s: str) -> int:
n = len(s)
dp1 = [[False] * n for _ in range(n)]
for i in range(n - 1, -1, -1):
for j in range(i, n):
dp1[i][j] = s[i] == s[j] and (j - i < 3 or dp1[i + 1][j - 1])
dp2 = [0] * n
for i in range(n):
if not dp1[0][i]:
dp2[i] = i
for j in range(1, i + 1):
if dp1[j][i]:
dp2[i] = min(dp2[i], dp2[j - 1] + 1)
return dp2[-1]
class Solution {
public int minCut(String s) {
int n = s.length();
boolean[][] dp1 = new boolean[n][n];
for (int i = n - 1; i >= 0; i--) {
for (int j = i; j < n; j++) {
dp1[i][j] = s.charAt(i) == s.charAt(j) && (j - i < 3 || dp1[i + 1][j - 1]);
}
}
int[] dp2 = new int[n];
for (int i = 0; i < n; i++) {
if (!dp1[0][i]) {
dp2[i] = i;
for (int j = 1; j <= i; j++) {
if (dp1[j][i]) {
dp2[i] = Math.min(dp2[i], dp2[j - 1] + 1);
}
}
}
}
return dp2[n - 1];
}
}
func minCut(s string) int {
n := len(s)
dp1 := make([][]bool, n)
for i := 0; i < n; i++ {
dp1[i] = make([]bool, n)
}
for i := n - 1; i >= 0; i-- {
for j := i; j < n; j++ {
dp1[i][j] = s[i] == s[j] && (j-i < 3 || dp1[i+1][j-1])
}
}
dp2 := make([]int, n)
for i := 0; i < n; i++ {
if !dp1[0][i] {
dp2[i] = i
for j := 1; j <= i; j++ {
if dp1[j][i] {
dp2[i] = min(dp2[i], dp2[j-1]+1)
}
}
}
}
return dp2[n-1]
}
func min(x, y int) int {
if x < y {
return x
}
return y
}
class Solution {
public:
int minCut(string s) {
int n = s.size();
vector<vector<bool>> dp1(n, vector<bool>(n));
for (int i = n - 1; i >= 0; --i) {
for (int j = i; j < n; ++j) {
dp1[i][j] = s[i] == s[j] && (j - i < 3 || dp1[i + 1][j - 1]);
}
}
vector<int> dp2(n);
for (int i = 0; i < n; ++i) {
if (!dp1[0][i]) {
dp2[i] = i;
for (int j = 1; j <= i; ++j) {
if (dp1[j][i]) {
dp2[i] = min(dp2[i], dp2[j - 1] + 1);
}
}
}
}
return dp2[n - 1];
}
};