运用所掌握的数据结构,设计和实现一个 LRU (Least Recently Used,最近最少使用) 缓存机制 。
实现 LRUCache
类:
LRUCache(int capacity)
以正整数作为容量capacity
初始化 LRU 缓存int get(int key)
如果关键字key
存在于缓存中,则返回关键字的值,否则返回-1
。void put(int key, int value)
如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
示例:
输入 ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] 输出 [null, null, null, 1, null, -1, null, -1, 3, 4] 解释 LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // 缓存是 {1=1} lRUCache.put(2, 2); // 缓存是 {1=1, 2=2} lRUCache.get(1); // 返回 1 lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3} lRUCache.get(2); // 返回 -1 (未找到) lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3} lRUCache.get(1); // 返回 -1 (未找到) lRUCache.get(3); // 返回 3 lRUCache.get(4); // 返回 4
提示:
1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
- 最多调用
2 * 105
次get
和put
进阶:是否可以在 O(1)
时间复杂度内完成这两种操作?
注意:本题与主站 146 题相同:https://leetcode.cn/problems/lru-cache/
“哈希表 + 双向链表”实现。其中:
- 双向链表按照被使用的顺序存储 kv 键值对,靠近头部的 kv 键值对是最近使用的,而靠近尾部的键值对是最久未使用的。
- 哈希表通过缓存的 key 映射到双向链表中的位置。我们可以在
O(1)
时间内定位到缓存的 key 所对应的 value 在链表中的位置。
对于 get
操作,判断 key 是否存在哈希表中:
- 若不存在,返回 -1
- 若存在,则 key 对应的节点 node 是最近使用的节点。将该节点移动到双向链表的头部,最后返回该节点的值即可。
对于 put
操作,同样先判断 key 是否存在哈希表中:
- 若不存在,则创建一个新的 node 节点,放入哈希表中。然后在双向链表的头部添加该节点。接着判断双向链表节点数是否超过 capacity。若超过,则删除双向链表的尾部节点,以及在哈希表中对应的项。
- 若存在,则更新 node 节点的值,然后该节点移动到双向链表的头部。
双向链表节点(哈希表的 value)的结构如下:
class Node {
int key;
int value;
Node prev;
Node next;
Node() {
}
Node(int key, int value) {
this.key = key;
this.value = value;
}
}
你可能会问,哈希表的 value 为何还要存放 key?
这是因为,双向链表有一个删除尾节点的操作。我们定位到双向链表的尾节点,在链表中删除之后,还要找到该尾节点在哈希表中的位置,因此需要根据 value 中存放的 key,定位到哈希表的数据项,然后将其删除。
class Node:
def __init__(self, key=0, value=0):
self.key = key
self.value = value
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.cache = {}
self.head = Node()
self.tail = Node()
self.capacity = capacity
self.size = 0
self.head.next = self.tail
self.tail.prev = self.head
def get(self, key: int) -> int:
if key not in self.cache:
return -1
node = self.cache[key]
self.move_to_head(node)
return node.value
def put(self, key: int, value: int) -> None:
if key in self.cache:
node = self.cache[key]
node.value = value
self.move_to_head(node)
else:
node = Node(key, value)
self.cache[key] = node
self.add_to_head(node)
self.size += 1
if self.size > self.capacity:
node = self.remove_tail()
self.cache.pop(node.key)
self.size -= 1
def move_to_head(self, node):
self.remove_node(node)
self.add_to_head(node)
def remove_node(self, node):
node.prev.next = node.next
node.next.prev = node.prev
def add_to_head(self, node):
node.next = self.head.next
self.head.next.prev = node
self.head.next = node
node.prev = self.head
def remove_tail(self):
node = self.tail.prev
self.remove_node(node)
return node
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
class LRUCache {
class Node {
int key;
int value;
Node prev;
Node next;
Node() {
}
Node(int key, int value) {
this.key = key;
this.value = value;
}
}
private Map<Integer, Node> cache;
private Node head;
private Node tail;
private int capacity;
private int size;
public LRUCache(int capacity) {
cache = new HashMap<>();
this.capacity = capacity;
head = new Node();
tail = new Node();
head.next = tail;
tail.prev = head;
}
public int get(int key) {
if (!cache.containsKey(key)) {
return -1;
}
Node node = cache.get(key);
moveToHead(node);
return node.value;
}
public void put(int key, int value) {
if (cache.containsKey(key)) {
Node node = cache.get(key);
node.value = value;
moveToHead(node);
} else {
Node node = new Node(key, value);
cache.put(key, node);
addToHead(node);
++size;
if (size > capacity) {
node = removeTail();
cache.remove(node.key);
--size;
}
}
}
private void moveToHead(Node node) {
removeNode(node);
addToHead(node);
}
private void removeNode(Node node) {
node.prev.next = node.next;
node.next.prev = node.prev;
}
private void addToHead(Node node) {
node.next = head.next;
head.next.prev = node;
head.next = node;
node.prev = head;
}
private Node removeTail() {
Node node = tail.prev;
removeNode(node);
return node;
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
继承 LinkedHashMap
快速实现
class LRUCache extends LinkedHashMap<Integer, Integer> {
private final int capacity;
public LRUCache(int capacity) {
super(capacity, 0.75f, true);
this.capacity = capacity;
}
@Override
protected boolean removeEldestEntry(Map.Entry eldest) {
return size() > capacity;
}
public int get(int key) {
return super.getOrDefault(key, -1);
}
public void put(int key, int value) {
super.put(key, value);
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/