三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。
示例1:
输入:n = 3 输出:4 说明: 有四种走法
示例2:
输入:n = 5 输出:13
提示:
- n范围在[1, 1000000]之间
递推法。f(n)=f(n-1)+f(n-2)+f(n-3)
class Solution:
def waysToStep(self, n: int) -> int:
if n < 3:
return n
a, b, c = 1, 2, 4
for _ in range(4, n + 1):
a, b, c = b, c, (a + b + c) % 1000000007
return c
class Solution {
public int waysToStep(int n) {
if (n < 3) {
return n;
}
int a = 1, b = 2, c = 4;
for (int i = 4; i <= n; ++i) {
int t = a;
a = b;
b = c;
c = ((a + b) % 1000000007 + t) % 1000000007;
}
return c;
}
}
/**
* @param {number} n
* @return {number}
*/
var waysToStep = function (n) {
if (n < 3) return n;
let a = 1,
b = 2,
c = 4;
for (let i = 3; i < n; i++) {
[a, b, c] = [b, c, (a + b + c) % 1000000007];
}
return c;
};
int waysToStep(int n) {
if (n < 3) {
return n;
}
int a = 1, b = 2, c = 4, i = 4;
while (i++ <= n) {
int t = ((a + b) % 1000000007 + c) % 1000000007;
a = b;
b = c;
c = t;
}
return c;
}
class Solution {
public:
int waysToStep(int n) {
if (n < 3) {
return n;
}
int a = 1, b = 2, c = 4, i = 4;
while (i++ <= n) {
int t = ((a + b) % 1000000007 + c) % 1000000007;
a = b;
b = c;
c = t;
}
return c;
}
};
impl Solution {
pub fn ways_to_step(n: i32) -> i32 {
let mut dp = [1, 2, 4];
let n = n as usize;
if n <= 3 {
return dp[n - 1];
}
for _ in 3..n {
dp = [
dp[1],
dp[2],
(((dp[0] + dp[1]) % 1000000007) + dp[2]) % 1000000007,
];
}
dp[2]
}
}