给定一个有序整数数组,元素各不相同且按升序排列,编写一个算法,创建一棵高度最小的二叉搜索树。
示例:给定有序数组: [-10,-3,0,5,9],
一个可能的答案是:[0,-3,9,-10,null,5],它可以表示下面这个高度平衡二叉搜索树:
0
/ \
-3 9
/ /
-10 5
方法一:递归
先找到数组的中间点,作为二叉搜索树的根节点,然后递归左右子树即可。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def sortedArrayToBST(self, nums: List[int]) -> TreeNode:
def dfs(l, r):
if l > r:
return None
mid = (l + r) >> 1
return TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r))
return dfs(0, len(nums) - 1)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private int[] nums;
public TreeNode sortedArrayToBST(int[] nums) {
this.nums = nums;
return dfs(0, nums.length - 1);
}
private TreeNode dfs(int l, int r) {
if (l > r) {
return null;
}
int mid = (l + r) >> 1;
return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
function<TreeNode*(int, int)> dfs = [&](int l, int r) -> TreeNode* {
if (l > r) return nullptr;
int mid = l + r >> 1;
return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
};
return dfs(0, nums.size() - 1);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func sortedArrayToBST(nums []int) *TreeNode {
var dfs func(int, int) *TreeNode
dfs = func(l, r int) *TreeNode {
if l > r {
return nil
}
mid := (l + r) >> 1
return &TreeNode{nums[mid], dfs(l, mid-1), dfs(mid+1, r)}
}
return dfs(0, len(nums)-1)
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function sortedArrayToBST(nums: number[]): TreeNode | null {
const dfs = (l: number, r: number): TreeNode | null => {
if (l > r) {
return null;
}
const mid = (l + r) >> 1;
return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
};
return dfs(0, nums.length - 1);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
fn dfs(nums: &Vec<i32>, start: usize, end: usize) -> Option<Rc<RefCell<TreeNode>>> {
if start >= end {
return None;
}
let mid = start + (end - start) / 2;
Some(Rc::new(RefCell::new(TreeNode {
val: nums[mid],
left: Self::dfs(nums, start, mid),
right: Self::dfs(nums, mid + 1, end),
})))
}
pub fn sorted_array_to_bst(nums: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
let end = nums.len();
Self::dfs(&nums, 0, end)
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {number[]} nums
* @return {TreeNode}
*/
var sortedArrayToBST = function (nums) {
function dfs(l, r) {
if (l > r) {
return null;
}
const mid = (l + r) >> 1;
return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
}
return dfs(0, nums.length - 1);
};