给定一个字符串,编写一个函数判定其是否为某个回文串的排列之一。
回文串是指正反两个方向都一样的单词或短语。排列是指字母的重新排列。
回文串不一定是字典当中的单词。
示例1:
输入:"tactcoa" 输出:true(排列有"tacocat"、"atcocta",等等)
用哈希表存储每个字符出现的次数。若次数为奇数的字符超过 1 个,则不是回文排列。
class Solution:
def canPermutePalindrome(self, s: str) -> bool:
counter = Counter(s)
return sum(1 for v in counter.values() if v % 2 == 1) <= 1
class Solution {
public boolean canPermutePalindrome(String s) {
Map<Character, Integer> counter = new HashMap<>();
for (char c : s.toCharArray()) {
counter.put(c, counter.getOrDefault(c, 0) + 1);
}
int cnt = 0;
for (int v : counter.values()) {
cnt += v % 2;
}
return cnt < 2;
}
}
func canPermutePalindrome(s string) bool {
m := make(map[rune]bool)
count := 0
for _, r := range s {
if m[r] {
m[r] = false
count--
} else {
m[r] = true
count++
}
}
return count <= 1
}
class Solution {
public:
bool canPermutePalindrome(string s) {
unordered_map<char, int> counter;
for (char c : s) ++counter[c];
int cnt = 0;
for (auto& [k, v] : counter) cnt += v % 2;
return cnt < 2;
}
};
function canPermutePalindrome(s: string): boolean {
const set = new Set<string>();
for (const c of s) {
if (set.has(c)) {
set.delete(c);
} else {
set.add(c);
}
}
return set.size <= 1;
}
use std::collections::HashSet;
impl Solution {
pub fn can_permute_palindrome(s: String) -> bool {
let mut set = HashSet::new();
for c in s.chars() {
if set.contains(&c) {
set.remove(&c);
} else {
set.insert(c);
}
}
set.len() <= 1
}
}