This is a library for uploading machine learning models to Luk.ai.
You'll need to create an API token first.
import lukai
# ... your model definition code
sess = tf.Session()
sess.run(tf.initialize_all_variables())
# Sets the Luk.ai API token.
lukai.set_api_token('<your token>')
# Uploads the model to Luk.ai and creates a training job.
lukai.upload(
session=sess,
domain='<your domain>',
model_type='<your model type>',
name='Hello World',
description='This is the first model I've uploaded!',
hyper_params=lukai.HyperParams(
num_clients = 10,
batch_size = 10,
num_rounds = 100,
learning_rate = learning_rate,
num_local_rounds = 10,
),
metrics={
accuracy: lukai.REDUCE_MEAN,
},
event_targets={
lukai.EVENT_TRAIN: (keep_prob.assign(0.5),),
lukai.EVENT_INFER: (keep_prob.assign(1.0),),
lukai.EVENT_EVAL: (keep_prob.assign(1.0),),
},
)
See the full mnist example.
You can also directly output the model.tar.gz
file if you'd like.
from lukai import saver
# ... your model definition code
sess = tf.Session()
sess.run(tf.initialize_all_variables())
print('Node names: x = {}, y_ = {}, train_step = {}, w = {}, b = {}, y = {}'.format(
x.name, y_.name, train_step.name, w.name, b.name, y.name,
))
saver.save(sess)
See the full leastsquares example