-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDESCRIPTION
52 lines (52 loc) · 1.51 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
Package: bayesianVARs
Title: MCMC Estimation of Bayesian Vectorautoregressions
Version: 0.1.5
Authors@R: c(
person("Luis", "Gruber", , "[email protected]", role = c("cph", "aut", "cre"),
comment = c(ORCID = "0000-0002-2399-738X")),
person("Gregor", "Kastner", , "[email protected]", role = "ctb",
comment = c(ORCID = "0000-0002-8237-8271"))
)
Description: Efficient Markov Chain Monte Carlo (MCMC) algorithms for the
fully Bayesian estimation of vectorautoregressions (VARs) featuring
stochastic volatility (SV). Implements state-of-the-art shrinkage
priors following Gruber & Kastner (2023) <doi:10.48550/arXiv.2206.04902>.
Efficient equation-per-equation estimation following Kastner & Huber
(2020) <doi:10.1002/for.2680> and Carrerio et al. (2021)
<doi:10.1016/j.jeconom.2021.11.010>.
License: GPL (>= 3)
URL: https://github.com/luisgruber/bayesianVARs,
https://luisgruber.github.io/bayesianVARs/
BugReports: https://github.com/luisgruber/bayesianVARs/issues
Depends:
R (>= 3.3.0)
Imports:
colorspace,
factorstochvol (>= 1.1.0),
GIGrvg (>= 0.7),
graphics,
MASS,
mvtnorm,
Rcpp (>= 1.0.0),
scales,
stats,
stochvol (>= 3.0.3),
utils
Suggests:
coda,
knitr,
rmarkdown,
testthat (>= 3.0.0)
LinkingTo:
factorstochvol,
Rcpp,
RcppArmadillo,
RcppProgress,
stochvol
VignetteBuilder:
knitr
Config/testthat/edition: 3
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.1