-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure_8.R
179 lines (161 loc) · 6.88 KB
/
figure_8.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
library(dplyr)
library(tidyr)
library(ggplot2)
library(purrr)
library(stringr)
library(lubridate)
dire <- "figures/"
if(!dir.exists(dire)) dir.create(dire)
data <- readRDS("results/table_4.rds")
avg_LPL <- function(LPLs){
numericalnormalizer <- max(LPLs) - 700
log(mean(exp(LPLs - numericalnormalizer))) + numericalnormalizer
}
normalize_stable <- function(logx){
logx_max <- max(logx)
x_rel <- exp(logx - logx_max)
x_rel/sum(x_rel)
}
dma <- function(LPL, alpha, selection=FALSE){
names <- colnames(LPL)
LPL <- as.matrix(LPL)
T <- nrow(LPL)
M <- ncol(LPL)
# weight storage
omega_t_pred <- matrix(as.numeric(NA), T, M)
colnames(omega_t_pred) <- names
# initialize weights
omega_t_pred_temp <- rep(1/M,M)
for(t in seq.int(T)){
# discount and normalize latest weights
omega_t_pred[t,] <- normalize_stable(alpha*log(omega_t_pred_temp))
# update weights
omega_t_pred_temp <- normalize_stable(log(omega_t_pred[t,])+LPL[t,] - max(LPL[t,]))
}
if(selection){
DMA_LPL <- vapply(seq.int(T),
FUN = function(i){
LPL[i,which.max(omega_t_pred[i,])]
},
FUN.VALUE = numeric(1L)
)
}else{
numerical_normalizer <- apply(LPL, 1, max) - 700
DMA_LPL <- log(rowSums(omega_t_pred*exp(LPL-numerical_normalizer))) + numerical_normalizer
}
return(list(weights=omega_t_pred,
LPL = LPL,
DMA_LPL = DMA_LPL))
}
ldf <- function(LPL, alphas, layers = 2){
n <- nrow(LPL)
k <- ncol(LPL)
m <- length(alphas)
ldf_LPL <- array(as.numeric(NA), c(n,m,layers))
LPL_tmp <- LPL
for(l in seq.int(layers)){
for(a in seq_along(alphas)){
ldf_LPL[,a,l] <- dma(LPL = LPL_tmp, alpha = alphas[a], selection = FALSE)$DMA_LPL
}
LPL_tmp <- ldf_LPL[,,l]
}
ldf_LPL
}
scores_aggr <- data |> group_by(model, priorU, est_end, p, score, ahead, fore_date) |>
summarise(LPL = avg_LPL(LPL)) |> ungroup()|>
mutate(model = case_when(model %in% "HM"~"SHM",
model %in%"NG_star"~"NG*",
model %in%"R2D2_star"~"R2D2*",
model %in% "HS_star"~"HS*",
model %in%"DL_a_star"~"DL*_a",
model %in%"NG_a_star"~"NG*_a",
model %in%"R2D2_a_star"~"R2D2*_a",
model %in%"SSVS2_star"~"SSVS*_p",
model %in%"SSVS2_f"~"SSVS",
model %in%"SSVS2"~"SSVS_p",
.default = model),
priorU = case_when(priorU %in% "HM"~"GS",
priorU %in% "SSVS2_f"~"AT",
priorU %in% "R2D2"~"AT",
priorU %in% "NG"~"AT",
priorU %in% "DL"~"AT",
.default = priorU))
# nber recessions
# nber_rec <- tis::nberDates() |> as_tibble() |>
# mutate(Start = lubridate::ymd(Start),
# End = lubridate::ymd(End)) |>
# filter(Start >= "1980-06-01",
# Start <= "2020-03-01")
nber_rec <- readRDS("data/nber_recessions.rds")
# zero lower bound
zlb <- data.frame(Start = lubridate::ymd("2009-03-01"), End = lubridate::ymd("2015-12-01"))
myLPLs <- c("LPL", "LPL_VoI")#"LPL_VoI" #"LPL"
for(myLPL in myLPLs){
LPL_selection <- scores_aggr |>
filter(ahead==1L, model%in%c("DL*_a","HS*","NG*_a","R2D2*_a", "SHM"), #p==2, #
fore_date<lubridate::ymd("2020-06-01"),
priorU=="HS",
score == {{myLPL}}) |>
mutate(model_p=paste0(model,"/",p)) |>
select(fore_date, model_p, LPL) |>
pivot_wider(names_from = model_p, values_from = LPL) |>
arrange(fore_date)
myDMA <- dma(LPL_selection[,-1], 0.99, selection = FALSE)
alphas <- c(seq(.1,.9,.1),.95,.99,1)
myldf <- ldf(LPL_selection[,-1], alphas = alphas, layers = 10L)
# # colSums(myldf[,,4])
#
DMA_data <- bind_cols(date=LPL_selection$fore_date,myDMA$weights[,]) |> #-nrow(myDMA$weights)
as_tibble() |>
pivot_longer(-date, names_to = "model_p", values_to = "weights~(alpha==0.99)") |>
mutate(model = str_split(model_p,"/") |> map_chr(~.x[1]),
p = str_split(model_p,"/") |> map_chr(~.x[2])) |>
select(date, model, p, `weights~(alpha==0.99)`) |>
group_by(model, p)# |>
#mutate(p=as_factor(p))
LPL_data <- bind_cols(date=LPL_selection$fore_date,myDMA$LPL,"LDF/0"=myldf[,1,4]) |>
as_tibble() |> bind_cols("DMA/0"=myDMA$DMA_LPL) |>
mutate(across(-date, ~.x-`DMA/0`)) |>
pivot_longer(-date, names_to = "model_p", values_to = "LPL") |>
mutate(model = str_split(model_p,"/") |> map_chr(~.x[1]),
p = str_split(model_p,"/") |> map_chr(~.x[2])) |>
select(date, model, p, LPL) |>
group_by(model, p) |>
mutate(#p=as_factor(p),
"log~predictive~likelihoods"=cumsum(LPL))
DMA_LPL_merge <- DMA_data |> full_join(LPL_data) |>
pivot_longer(`weights~(alpha==0.99)`:`log~predictive~likelihoods`, values_to = "score", names_to = "DMA") |>
mutate(score, DMA = factor(DMA, levels = c("weights~(alpha==0.99)","log~predictive~likelihoods")))
ggplot(DMA_LPL_merge |> filter(model!="DMA", DMA!="LPL", model != "LDF")) +
geom_line(aes(x = date, y = score, color = model, linetype=p), lwd=0.8) +
facet_wrap(.~DMA, scales = "free_y", labeller = "label_parsed") +
geom_hline(yintercept = 0) +
geom_line(data = DMA_LPL_merge |> filter(model == "LDF", DMA=="log~predictive~likelihoods"),
aes(date, score), color = "black", lwd=.8) +
geom_text(aes(x = x,y = y,label = label), hjust = "inward",
data.frame(x=lubridate::ymd("2020-03-01"), y = if(myLPL=="LPL") 15 else 5, label = "LDF", DMA= factor("log~predictive~likelihoods"))) +
geom_rect(data = nber_rec, aes(xmin = Start, xmax = End,
ymin = -Inf, ymax = Inf),
fill='grey80', alpha=0.7) +
#("2009-03-01"), ("2015-12-01")
geom_rect(data = zlb, aes(xmin = Start, xmax = End,
ymin = -Inf, ymax = Inf),
fill='lightgreen', alpha=0.5)+
scale_x_date(#minor_breaks = seq(ymd("1980-01-01"), ymd("2020-01-01"), by="10 year"),
breaks = seq(lubridate::ymd("1980-01-01"), lubridate::ymd("2020-01-01"), by="5 year"),
#date_labels = "%Y",
labels = c(as.vector(sapply(seq(1985,2015,10), \(x) c("",x))),"")) +
theme_bw() +
theme(plot.background = element_blank(),
# #panel.background = element_rect(fill="white", color = "black"),
# axis.line = element_line(colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.title = element_blank(),
legend.position = "bottom",
legend.box = "vertical",
legend.margin = margin(),
legend.key.width = unit(.75,"in"))
ind <- if(myLPL=="LPL") "a" else "b"
ggsave(paste0("figures/figure_8", ind,".pdf"), width = 12, height = 5, dpi = 300)
}