-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathempirical_application_clusterscript.R
425 lines (376 loc) · 16.5 KB
/
empirical_application_clusterscript.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
library("RhpcBLASctl")
blas_set_num_threads(1)
omp_set_num_threads(1)
set.seed(1234)
library(bayesianVARs)
library(lubridate)
library(xts)
library(coda)
running_variable <- as.integer(Sys.getenv("SLURM_ARRAY_TASK_ID"))
if(is.na(running_variable)) {
running_variable <- 1L
cluster <- FALSE
}else{
cluster <- TRUE
}
# get data
if(!cluster) {
data <- readRDS(paste0("data/data_growth.RData"))
}else{
data <- readRDS(paste0("data/data_growth.RData"))
}
# variables of interest
VoI <- c("GDPC1", "CPIAUCSL", "FEDFUNDS")
# grid
lagorder <- 1:5
seeds <- sample(1:100000,10)
est_end <- est_end <- seq(as.Date("1980-03-01"), as.Date("2020-03-01"), by = "quarter")#ymd(index(data$small["1980-03-01/2020-03-01"])) #2021-03-01 end of estimation windows
lags <- lagorder
sizes <- c(large="large")
models <- c("MP_LIT", "HM", "HS", "DL", "NG", "R2D2", "DL_a", "NG_a", "R2D2_a",
"NG_star", "R2D2_star", "HS_star", "DL_a_star", "NG_a_star",
"R2D2_a_star", "SSVS2_f", "SSVS2", "SSVS2_star")
grid_main <- expand.grid(seed=seeds, model=models, priorU="HS", est_end=est_end, p=lags)
lagorder_robustness <- 2:4
models_robustness <- c("DL","NG", "R2D2", "HS", "HM", "MP_LIT", "SSVS2_f",
"DL_a_star", "NG_a_star", "R2D2_a_star", "HS_star")
priorU <- c("HM", "FLAT")
grid0 <- expand.grid(seed=seeds, model=models_robustness, priorU=priorU, est_end=est_end,
p=lagorder_robustness, stringsAsFactors = FALSE)
gridDL <- expand.grid(seed=seeds, model=c("DL", "DL_a_star"), priorU="DL",
est_end=est_end, p=lagorder_robustness, stringsAsFactors = FALSE)
gridNG <- expand.grid(seed=seeds, model=c("NG","NG_a_star"), priorU="NG",
est_end=est_end, p=lagorder_robustness, stringsAsFactors = FALSE)
gridR2D2 <- expand.grid(seed=seeds, model=c("R2D2", "R2D2_a_star"), priorU="R2D2",
est_end=est_end, p=lagorder_robustness, stringsAsFactors = FALSE)
gridSSVS <- expand.grid(seed=seeds, model="SSVS2_f", priorU="SSVS2_f",
est_end=est_end, p=lagorder_robustness, stringsAsFactors = FALSE)
grid_robustness <- rbind(grid0, gridDL, gridNG, gridR2D2, gridSSVS)
grid <- rbind(grid_main, grid_robustness)
# Sampler settings
each <- 10 # number of predictive draws per posterior draw
if(cluster){
burnin <- 5000
draws <- 15000
}else{
burnin <- 1000
draws <- 2000
}
tol <- 1e-20 # controls that the prior variances do not get too small in order to avoid numerical problems
mysplit <- function(x,n) split(x, cut(seq_along(x), n, labels = FALSE))
rearrange <- numeric(each*draws)
for(r in seq.int(draws)){
rearrange[((r-1)*each + 1):(r*each)] <- (0:(each-1)*draws) + r
}
for (run in running_variable) {
# Get model specifications
model <- as.character(grid$model[run])
p <- as.integer(grid$p[run])
seed <- real_seed <- as.integer(grid$seed[run])
priorU <- as.character(grid$priorU[run])
# Get data for estimation and predictive evaluation
est_end <- ymd(grid$est_end[run]) # end of estimation period
est_period <- paste0("/", est_end) # whole estimation period
Y_est_raw <- data[["large"]][est_period] # data for estimation
Y_est <- as.matrix(Y_est_raw)
h <- 4 # forecast horizon
eval_start <- est_end + months(3)
eval_end <- est_end + months(12)
#last available observation is "2021-06-01"; check maximum possible forecast length
if(eval_end > ymd("2021-06-01")){
eval_end <- ymd("2021-06-01")
#check whether eval_start and eval_end are in the same year
if(year(eval_end) > year(eval_start)){
h1 <- 12- month(eval_start) # remaining month in year of eval_start
h <- (h1 + month(eval_end))/3 + 1
}else h <- (month(eval_end) - month(eval_start))/3 + 1 # transform difference in month to quarter
}
eval_dates <- paste0(eval_start,"/", eval_end)
Y_obs_raw <- data[["large"]][eval_dates] # observed data for evaluation of h-step ahead predictions
Y_obs <- as.matrix(Y_obs_raw)
# create directory where everything will be stored
folder <- paste0("empirical_application/", model, "/priorU_", priorU ,"/p_", p, "/", est_end, "/",
seed, "/")
dir.create(folder, showWarnings = FALSE, recursive = TRUE)
filestostore <- paste0(folder, c("LPL", "LPL_VoI", "LPL_univariate", "MSFE", "MAFE"), ".rds")
if(all(file.exists(filestostore))){
cat("Nothing to do!\n")
next()
}
# Prior covariance-variance -----------------------------------------------
# create objects for each possible argument in specify_prior_phi() and specify_prior_sigma()
# Prior on elements of triangular matrix U
cholesky_U_prior <- if(priorU == "HS" | priorU == "SSVS" | priorU == "DL" | priorU == "NG" | priorU == "R2D2"){
priorU
}else if(priorU == "HM"){
"HMP"
}else if(priorU == "SSVS2_f"){
"SSVS"
}else if(priorU == "FLAT"){
"normal"
}
# Hyperparameter settings
nU <- (ncol(Y_est)^2-ncol(Y_est))/2 # number of free elements in U
cholesky_DL_a <- "1/n"
cholesky_DL_tol <- tol
cholesky_R2D2_a <- 1/(2*nU)
cholesky_R2D2_b <- 0.5
cholesky_R2D2_tol <- tol^2
cholesky_NG_a <- 1/(2*nU)
cholesky_NG_b <- 0.5
cholesky_NG_c <- 1/(4*nU)
cholesky_NG_tol <- tol^2
cholesky_SSVS_c0 <- if(priorU == "SSVS") 0.1 else if(priorU == "SSVS2_f") 0.001
cholesky_SSVS_c1 <- if(priorU == "SSVS") 6 else if(priorU == "SSVS2_f") 1
cholesky_SSVS_p <- .5
cholesky_HMP_lambda_3 <- c(0.01,0.01)
cholesky_normal_sds <- sqrt(10)
# SV prior
cholesky_heteroscedastic <- TRUE
cholesky_priorhomoscedastic <- as.numeric(NA)
cholesky_priormu <- c(0,100)
cholesky_priorphi <- c(20, 1.5)
cholesky_priorsigma2 <- c(.5, .5)
cholesky_priorh0 = "stationary"
expert_sv_offset <- if((p == 5 & (model == "SSVS" | model == "SSVS_f" | model == "SSVS_star")) |
(p>1 & model == "FLAT")){
1e-30
}else{
0
}
prior_sigma <- specify_prior_sigma(data = Y_est, type = "cholesky",
cholesky_U_prior = cholesky_U_prior,
cholesky_U_tol = 0,
cholesky_heteroscedastic = cholesky_heteroscedastic,
cholesky_priormu = cholesky_priormu,
cholesky_priorphi = cholesky_priorphi,
cholesky_priorsigma2 = cholesky_priorsigma2,
cholesky_priorh0 = cholesky_priorh0,
cholesky_priorhomoscedastic = cholesky_priorhomoscedastic,
cholesky_DL_a = cholesky_DL_a,
cholesky_DL_tol = cholesky_DL_tol,
cholesky_R2D2_a = cholesky_R2D2_a,
cholesky_R2D2_b = cholesky_R2D2_b,
cholesky_R2D2_tol = cholesky_R2D2_tol,
cholesky_NG_a = cholesky_NG_a,
cholesky_NG_b = cholesky_NG_b,
cholesky_NG_c = cholesky_NG_c,
cholesky_NG_tol = cholesky_NG_tol,
cholesky_SSVS_c0 = cholesky_SSVS_c0,
cholesky_SSVS_c1 = cholesky_SSVS_c1,
cholesky_SSVS_p = cholesky_SSVS_p,
cholesky_HMP_lambda3 = cholesky_HMP_lambda_3,
cholesky_normal_sds = cholesky_normal_sds,
expert_sv_offset = expert_sv_offset)
# Prior VAR coefficients --------------------------------------------------
prior_intercept <- 1000
priorPHI <- if(model == "HS" | model == "R2D2" | model == "NG" |
model == "DL" | model == "SSVS"){
model
}else if(model == "FLAT" | model == "MP_LIT"){
"normal"
}else if(model == "HM"){
"HMP"
}else if(model == "SSVS2" | model == "SSVS2_f" | model == "SSVS_star" |
model == "SSVS2_star" | model == "SSVS_f"){
"SSVS"
}else if(model == "HS_star" | model == "HS_plus"){
"HS"
}else if(model == "NG_a" | model == "NG_star" | model == "NG_a_star"){
"NG"
}else if(model == "DL_a" | model == "DL_a_star" | model == "DL_plus" |
model == "DL_plus_a_star" | model == "DL_plus_star"){
"DL"
}else if(model == "R2D2_a" | model == "R2D2_star" | model == "R2D2_a_star"){
"R2D2"
}
priormean <- 0
# Hyperparameter settings
cpe <- p*ncol(Y_est) # coeffiecients per equation without intercept
# discrete distribution with masses proportional to dexp(1)
xx <- seq(1/(ncol(Y_est)*cpe), 1, len = 1000)
dxx <- dexp(xx,1)
dxxn <- dxx/sum(dxx)
a_mat <- cbind(xx, dxxn)
DL_a <- if(model == "DL" | model == "DL_plus" | model == "DL_plus_star"){
"1/K"
}else if(model == "DL_a" | model == "DL_a_star" | model == "DL_plus_a_star"){
a_mat
}
DL_tol <- tol
R2D2_a <- if(model == "R2D2" | model == "R2D2_star"){
1/(2*cpe)
}else if(model == "R2D2_a" | model =="R2D2_a_star"){
a_mat
}
R2D2_b <- 0.5
R2D2_tol <- 2*tol^2
NG_a <- if(model == "NG" | model == "NG_star"){
1/(2*cpe)
}else if(model == "NG_a" | model == "NG_a_star"){
a_mat
}
NG_b <- 0.5
NG_c <- if(model == "NG" | model == "NG_star"){
1/(4*cpe)
}else if(model == "NG_a" | model == "NG_a_star"){
"0.5*a"
}
NG_tol <- tol^2
SSVS_c0 <- if(model == "SSVS" | model == "SSVS_star" | model == "SSVS_f"){
0.1
}else if(model == "SSVS2" | model == "SSVS2_star" | model == "SSVS2_f"){
0.01
}
SSVS_c1 <- if(model == "SSVS" | model == "SSVS_star" | model == "SSVS_f"){
10
}else if(model == "SSVS2" | model == "SSVS2_star" | model == "SSVS2_f"){
100
}
SSVS_semiautomatic <- TRUE
SSVS_p <- if(model == "SSVS" | model == "SSVS_star" | model == "SSVS2" |
model == "SSVS2_star"){
c(1,1)
}else if(model == "SSVS_f" | model == "SSVS2_f"){
0.5
}
HMP_lambda1 <- c(0.01, 0.01)
HMP_lambda2 <- c(0.01, 0.01)
normal_sds <- if(model == "FLAT"){
sqrt(10)
}else if(model == "MP_LIT"){
# original Minnesota prior as in Litterman (1986)
# OLS variances of univariate AR(6) models for each variable
sigma_sq <- bayesianVARs:::MP_sigma_sq(Y_est, 6)
# prior variances (intercept = FALSE, because for comparability the prior
# variance for the intercept is 1000 for all models)
LIT_V_i <- bayesianVARs:::get_MP_V_prior(sigma_sq = sigma_sq, p=p,
intercept=FALSE)
sqrt(LIT_V_i)
}
global_grouping <- if(model == "SSVS_star" | model == "SSVS2_star" |
model == "HS_star" | model == "NG_star" |
model == "NG_a_star" | model == "DL_a_star" |
model == "DL_plus_star" | model == "DL_plus_a_star" |
model == "R2D2_star" | model == "R2D2_a_star"){
"olcl-lagwise"
}else{
"global"
}
prior_phi <- specify_prior_phi(data = Y_est, lags = p, prior = priorPHI,
priormean = priormean, PHI_tol = 0,
DL_a = DL_a, DL_tol = DL_tol, R2D2_a = R2D2_a,
R2D2_b = R2D2_b, R2D2_tol = R2D2_tol,
NG_a = NG_a, NG_b = NG_b, NG_c = NG_c,
NG_tol = NG_tol, SSVS_c0 = SSVS_c0,
SSVS_c1 = SSVS_c1,
SSVS_semiautomatic = SSVS_semiautomatic,
SSVS_p = SSVS_p, HMP_lambda1 = HMP_lambda1,
HMP_lambda2 = HMP_lambda2,
normal_sds = normal_sds,
global_grouping = global_grouping)
# Estimate model ----------------------------------------------------------
set.seed(seed = real_seed)
success <- FALSE
nr_tries <- 0
while(!success & nr_tries<10){
nr_tries <- nr_tries + 1
mod <- try(
bvar(data = Y_est, lags = p, draws = draws, burnin = burnin,
prior_intercept = prior_intercept, prior_phi = prior_phi,
prior_sigma = prior_sigma, sv_keep = "all"),
silent = FALSE
)
cat("\n", gc(), "\n")
if(inherits(mod, "try-error")){
cat("\n", mod, "\n")
real_seed <- sample(1:1000000,1)
set.seed(real_seed)
}else{
cat("Finished sampling...running convergence checks!\n")
## Posterior con/divergence based on posterior of L2 norms
# variance analysis
PHI_mat <- matrix(mod$PHI, ncol = draws)
PHI_norms <- sqrt(colSums(PHI_mat^2))
# Split single chain into ten parts
splitind <- mysplit(1:draws,10)
varofsplittedchains <- unlist(lapply(splitind, FUN = function(x) var(PHI_norms[x])))
PHI_diagnostic <- var(varofsplittedchains)/var(PHI_norms)
sv_latent <- mod$logvar[dim(mod$logvar)[1],,]
sv_latent_norm <- sqrt(colSums(sv_latent^2))
# Split single chain into ten parts
varofsplittedchainsSV <- unlist(lapply(splitind, FUN = function(x) var(sv_latent_norm[x])))
SV_diagnostic <- var(varofsplittedchainsSV)/var(sv_latent_norm)
# #(Geweke's convergence diagnostic)
# cat("Convergence plots and info file!\n")
# # geweke ('equality of means')
# geweke_PHI_full <- coda::geweke.diag(PHI_norms, frac1 = 1/3, frac2 = 1/3)$z
# info_df <- data.frame(real_seed=real_seed, nr_tries = nr_tries,
# PHI_diagnostic = PHI_diagnostic,
# SV_diagnostic = SV_diagnostic,
# gk_PHI_full = geweke_PHI_full)
if(PHI_diagnostic>1 | SV_diagnostic>1){
cat("no convergence...rerunning the sampler!\n")
real_seed <- sample(1:1000000,1)
set.seed(real_seed)
}else{
cat("Chain succesfully converged!\n")
cat("Start predicting...\n")
pred <- tryCatch(bayesianVARs:::predict.bayesianVARs_bvar(mod, ahead = 1:h, each = each,
stable = FALSE,
simulate_predictive = TRUE,
LPL = TRUE, LPL_VoI = VoI,
Y_obs = Y_obs),
error = function(e) e)
cat("\n", gc(), "\n")
pred$predictions <- pred$predictions[,,rearrange]
if(!inherits(pred, "error")){
cat("Checking for outliers...\n")
## check for extreme outliers
outliermat <- matrix(as.logical(NA),h, draws*each)
PRED_diagnostic <- rep(as.numeric(NA), h)
for(kk in seq.int(h)){
dists <- sqrt(colSums(pred$predictions[kk,,]^2))
outlier <- outliermat[kk,] <- dists > quantile(dists, .75) + 5e03*IQR(dists)
if(sum(outlier>0)){
# in case of extreme outliers, remove those predictions and recalculate LPLs
pred$predictions[kk,,outlier] <- as.numeric(NA)
numericalnormalizerfull <- max(pred$LPL_draws[kk,!outlier]) - 700
pred$LPL[kk] <- log(mean(exp(pred$LPL_draws[kk,!outlier]-numericalnormalizerfull))) + numericalnormalizerfull
numericalnormalizerVoI <- max(pred$LPL_sub_draws[kk,!outlier]) - 700
pred$LPL_VoI[kk] <- log(mean(exp(pred$LPL_sub_draws[kk,!outlier]-numericalnormalizerVoI))) + numericalnormalizerVoI
pred$LPL_univariate[kk,] <- log(apply(pred$PL_univariate_draws[kk,,!outlier],1,mean))
}
dists <- dists[!outlier]
splitindPRED <- mysplit(1:length(dists),10)
varofsplittedchainsPRED <- unlist(lapply(splitindPRED, FUN = function(x) var(dists[x])))
PRED_diagnostic[kk] <- var(varofsplittedchainsPRED)/var(dists)
}
if(any(PRED_diagnostic>1)){
real_seed <- sample(1:1000000,1)
set.seed(real_seed)
}else{
cat("Succesfully converged!\n")
success <- TRUE
}
}else{
real_seed <- sample(1:1000000,1)
set.seed(real_seed)
}
}
}
}
if(!inherits(mod, "try-error")) {
# save all draws for full samples
if(eval_start == ymd("2020-03-01")){
saveRDS(mod, file = paste0(folder, "mod.rds"))
}
if(!inherits(pred, "error")){
# save log predictive likelihoods
saveRDS(pred$LPL, paste0(folder,"LPL.rds"))
saveRDS(pred$LPL_VoI, paste0(folder,"LPL_VoI.rds"))
saveRDS(pred$LPL_univariate, paste0(folder,"LPL_univariate.rds"))
cat("Succesfully saved predictive scores!\n")
}
}
}