-
Notifications
You must be signed in to change notification settings - Fork 27
/
spark_ondemand.py
53 lines (43 loc) · 1.84 KB
/
spark_ondemand.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# ./airflow variables set gcp_project bigdataupv2022
# ./airflow variables set gcp_region europe-west1
# ./airflow variables set gcp_zone europe-west1-b
# ./airflow variables set gcp_bucket bigdataupv_data
import datetime
import os
from airflow import models
from airflow.contrib.operators import dataproc_operator
from airflow.utils import trigger_rule
yesterday = datetime.datetime.combine(
datetime.datetime.today() - datetime.timedelta(1),
datetime.datetime.min.time())
default_dag_args = {
'start_date': yesterday,
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': datetime.timedelta(minutes=5),
'project_id': models.Variable.get('gcp_project')
}
with models.DAG(
'spark_ondemand',
schedule_interval=datetime.timedelta(days=1),
default_args=default_dag_args) as dag:
create_dataproc_cluster = dataproc_operator.DataprocClusterCreateOperator(
task_id='create_dataproc_cluster',
cluster_name='spark-cluster-{{ ds_nodash }}',
num_workers=2,
zone=models.Variable.get('gcp_zone'),
region=models.Variable.get('gcp_region'),
master_machine_type='n1-standard-1',
worker_machine_type='n1-standard-1')
run_dataproc_pyspark = dataproc_operator.DataProcPySparkOperator(
task_id='run_spark',
cluster_name='spark-cluster-{{ ds_nodash }}',
region=models.Variable.get('gcp_region'),
main='gs://bigdataupv_code/compras_top_ten_countries.py',
files=['gs://bigdataupv_code/helpers.py'])
delete_dataproc_cluster = dataproc_operator.DataprocClusterDeleteOperator(
task_id='delete_dataproc_cluster',
cluster_name='spark-cluster-{{ ds_nodash }}',
trigger_rule=trigger_rule.TriggerRule.ALL_DONE)
create_dataproc_cluster >> run_dataproc_pyspark >> delete_dataproc_cluster