forked from salesforce/CodeT5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_multi_gen.py
535 lines (473 loc) · 26 KB
/
run_multi_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
import os
import torch
import logging
import argparse
import math
import numpy as np
from tqdm import tqdm
from itertools import cycle
import multiprocessing
import time
import sys
import pdb
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from transformers import AdamW, get_linear_schedule_with_warmup
from models import build_or_load_gen_model
from evaluator import smooth_bleu
from evaluator.CodeBLEU import calc_code_bleu
from evaluator.bleu import _bleu
from utils import get_elapse_time, load_and_cache_multi_gen_data
from configs import add_args, set_seed, set_dist
cpu_cont = multiprocessing.cpu_count()
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
WORKER_NUM = 0
def get_max_trg_len_by_task(task, sub_task):
if task == 'summarize':
max_target_length = 128
elif task == 'translate':
max_target_length = 256
elif task == 'refine':
if sub_task == 'small':
max_target_length = 120
else:
max_target_length = 240
elif task == 'concode':
max_target_length = 150
elif task == 'defect':
max_target_length = 3
return max_target_length
def get_bs(cur_task, model_tag):
task = cur_task.split('_')[0]
sub_task = cur_task.split('_')[-1]
if 'codet5_small' in model_tag:
bs = 32
if task == 'summarize' or task == 'translate' or (task == 'refine' and sub_task == 'small'):
bs = 64
else:
# codet5_base
bs = 28
if task == 'translate':
bs = 25
elif task == 'summarize':
bs = 40
return bs
def eval_bleu(args, eval_data, eval_examples, model, tokenizer, split_tag, cur_task, criteria):
eval_sampler = SequentialSampler(eval_data)
if args.data_num == -1:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size,
num_workers=4, pin_memory=True)
else:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
task = cur_task.split('_')[0]
sub_task = cur_task.split('_')[-1]
max_target_length = get_max_trg_len_by_task(task, sub_task)
model.eval()
pred_ids = []
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Eval bleu for {} set".format(split_tag)):
source_ids = batch[0].to(args.device)
source_mask = source_ids.ne(tokenizer.pad_token_id)
with torch.no_grad():
if args.model_type == 'roberta':
preds = model(source_ids=source_ids, source_mask=source_mask)
top_preds = [pred[0].cpu().numpy() for pred in preds]
else:
preds = model.generate(source_ids,
attention_mask=source_mask,
use_cache=True,
num_beams=5,
max_length=max_target_length, # length_penalty=0.6,
early_stopping=task == 'summarize')
top_preds = list(preds.cpu().numpy())
pred_ids.extend(top_preds)
pred_nls = [tokenizer.decode(id, skip_special_tokens=True, clean_up_tokenization_spaces=False) for id in pred_ids]
if task == 'defect':
target_dict = {0: 'false', 1: 'true'}
golds = [target_dict[ex.target] for ex in eval_examples]
eval_acc = np.mean([int(p == g) for p, g in zip(pred_nls, golds)])
result = {'em': eval_acc, 'bleu': 0, 'codebleu': 0}
else:
dev_accs = []
predictions = []
res_dir = os.path.join(args.res_dir, cur_task)
if not os.path.exists(res_dir):
os.makedirs(res_dir)
output_fn = os.path.join(res_dir, "test_{}.output".format(criteria))
gold_fn = os.path.join(res_dir, "test_{}.gold".format(criteria))
with open(output_fn, 'w') as f, open(gold_fn, 'w') as f1:
for pred_nl, gold in zip(pred_nls, eval_examples):
dev_accs.append(pred_nl.strip() == gold.target.strip())
if task == 'summarize':
predictions.append(str(gold.idx) + '\t' + pred_nl)
f.write(str(gold.idx) + '\t' + pred_nl.strip() + '\n')
f1.write(str(gold.idx) + '\t' + gold.target.strip() + '\n')
else:
f.write(pred_nl.strip() + '\n')
f1.write(gold.target.strip() + '\n')
try:
if task == 'summarize':
(goldMap, predictionMap) = smooth_bleu.computeMaps(predictions, gold_fn)
bleu = round(smooth_bleu.bleuFromMaps(goldMap, predictionMap)[0], 2)
else:
bleu = round(_bleu(gold_fn, output_fn), 2)
if split_tag == 'test':
if task in ['summarize', 'search']:
cur_lang = sub_task
elif task in ['refine', 'concode', 'clone']:
cur_lang = 'java'
elif task == 'defect':
cur_lang = 'c'
elif task == 'translate':
cur_lang = 'c_sharp' if sub_task == 'java-cs' else 'java'
codebleu = calc_code_bleu.get_codebleu(gold_fn, output_fn, cur_lang)
except:
bleu = 0.0
codebleu = 0.0
result = {}
em = np.mean(dev_accs) * 100
result['em'] = em
result['bleu'] = bleu
if not args.task == 'summarize' and split_tag == 'test':
result['codebleu'] = codebleu * 100
logger.info("***** Eval results [%s] *****", cur_task)
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(round(result[key], 4)))
return result
def main():
parser = argparse.ArgumentParser()
args = add_args(parser)
logger.info(args)
t0 = time.time()
set_dist(args)
set_seed(args)
config, model, tokenizer = build_or_load_gen_model(args)
model.to(args.device)
if args.n_gpu > 1:
# for DataParallel
model = torch.nn.DataParallel(model)
pool = multiprocessing.Pool(args.cpu_cont)
fa = open(os.path.join(args.output_dir, 'summary.log'), 'a+')
fa_dict = {}
if args.do_train:
if args.local_rank in [-1, 0] and args.data_num == -1:
summary_fn = './tensorboard/{}'.format('/'.join(args.output_dir.split('/')[1:]))
tb_writer = SummaryWriter(summary_fn)
# Prepare training data loader
train_examples_data_dict = load_and_cache_multi_gen_data(args, pool, tokenizer, 'train', is_sample=False)
train_data_list = [v[1] for k, v in train_examples_data_dict.items()]
all_tasks = [k for k, v in train_examples_data_dict.items()]
total_train_data_num = sum([len(v[0]) for k, v in train_examples_data_dict.items()])
for cur_task in all_tasks:
summary_dir = os.path.join(args.output_dir, 'summary')
if not os.path.exists(summary_dir):
os.makedirs(summary_dir)
fa_dict[cur_task] = open(os.path.join(summary_dir, '{}_summary.log'.format(cur_task)), 'a+')
train_dataloader_dict = dict()
for train_data, cur_task in zip(train_data_list, all_tasks):
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
if args.data_num == -1:
train_dataloader = DataLoader(train_data, sampler=train_sampler,
batch_size=get_bs(cur_task, args.model_name_or_path),
num_workers=WORKER_NUM, pin_memory=True)
else:
train_dataloader = DataLoader(train_data, sampler=train_sampler,
batch_size=get_bs(cur_task, args.model_name_or_path))
train_dataloader_dict[cur_task] = cycle(train_dataloader)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=args.max_steps)
# Start training
logger.info("***** Running training *****")
logger.info(" Total train data num = %d", total_train_data_num)
logger.info(" Max step = %d, Save step = %d", args.max_steps, args.save_steps)
dev_dataset = {}
step, global_step = 0, 0
best_bleu_em = dict([(k, -1) for k in all_tasks])
best_loss = dict([(k, 1e6) for k in all_tasks])
not_bleu_em_inc_cnt = dict([(k, 0) for k in all_tasks])
is_early_stop = dict([(k, 0) for k in all_tasks])
patience_pairs = []
for cur_task in all_tasks:
task = cur_task.split('_')[0]
if task == 'summarize':
patience_pairs.append((cur_task, 2))
elif task == 'translate':
patience_pairs.append((cur_task, 5))
elif task == 'refine':
patience_pairs.append((cur_task, 5))
elif task == 'concode':
patience_pairs.append((cur_task, 3))
elif task == 'defect':
patience_pairs.append((cur_task, 2))
patience_dict = dict(patience_pairs)
logger.info('Patience: %s', patience_dict)
probs = [len(x) for x in train_data_list]
probs = [x / sum(probs) for x in probs]
probs = [x ** 0.7 for x in probs]
probs = [x / sum(probs) for x in probs]
nb_tr_examples, nb_tr_steps, tr_nb, tr_loss, logging_loss = 0, 0, 0, 0, 0
bar = tqdm(total=args.max_steps, desc="Training")
skip_cnt = 0
while True:
cur_task = np.random.choice(all_tasks, 1, p=probs)[0]
train_dataloader = train_dataloader_dict[cur_task]
if is_early_stop[cur_task]:
skip_cnt += 1
if skip_cnt > 50:
logger.info('All tasks have early stopped at %d', step)
break
continue
else:
skip_cnt = 0
step += 1
batch = next(train_dataloader)
model.train()
batch = tuple(t.to(args.device) for t in batch)
source_ids, target_ids = batch
# logger.info('cur_task: %s, bs: %d', cur_task, source_ids.shape[0])
source_mask = source_ids.ne(tokenizer.pad_token_id)
target_mask = target_ids.ne(tokenizer.pad_token_id)
# pdb.set_trace()
if args.model_type == 'roberta':
loss, _, _ = model(source_ids=source_ids, source_mask=source_mask,
target_ids=target_ids, target_mask=target_mask)
else:
outputs = model(input_ids=source_ids, attention_mask=source_mask,
labels=target_ids, decoder_attention_mask=target_mask)
loss = outputs.loss
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
nb_tr_examples += source_ids.size(0)
nb_tr_steps += 1
loss.backward()
if nb_tr_steps % args.gradient_accumulation_steps == 0:
# Update parameters
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
train_loss = round((tr_loss - logging_loss) / (global_step - tr_nb), 6)
bar.update(1)
bar.set_description("[{}] Train loss {}".format(step, round(train_loss, 3)))
if args.local_rank in [-1, 0] and args.log_steps > 0 and global_step % args.log_steps == 0:
logging_loss = train_loss
tr_nb = global_step
if args.do_eval and args.local_rank in [-1, 0] \
and args.save_steps > 0 and global_step % args.save_steps == 0:
# save last checkpoint
if args.data_num == -1 and args.save_last_checkpoints:
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
if not os.path.exists(last_output_dir):
os.makedirs(last_output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the last model into %s", output_model_file)
if global_step % 100000 == 0:
step_tag = '{}00k'.format(global_step // 100000)
last_output_dir = os.path.join(args.output_dir, 'checkpoint-step-{}'.format(step_tag))
if not os.path.exists(last_output_dir):
os.makedirs(last_output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the last model into %s", output_model_file)
# Eval model with dev dataset
if 'dev_loss' in dev_dataset:
eval_examples_data_dict = dev_dataset['dev_loss']
else:
eval_examples_data_dict = load_and_cache_multi_gen_data(args, pool, tokenizer, 'dev')
dev_dataset['dev_loss'] = eval_examples_data_dict
for cur_task in eval_examples_data_dict.keys():
if is_early_stop[cur_task]:
continue
eval_examples, eval_data = eval_examples_data_dict[cur_task]
eval_sampler = SequentialSampler(eval_data)
if args.data_num == -1:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler,
batch_size=args.eval_batch_size,
num_workers=4, pin_memory=True)
else:
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler,
batch_size=args.eval_batch_size)
logger.info(" " + "***** Running ppl evaluation on [{}] *****".format(cur_task))
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
# Start Evaluating model
model.eval()
eval_loss, batch_num = 0, 0
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Eval ppl"):
batch = tuple(t.to(args.device) for t in batch)
source_ids, target_ids = batch
source_mask = source_ids.ne(tokenizer.pad_token_id)
target_mask = target_ids.ne(tokenizer.pad_token_id)
with torch.no_grad():
if args.model_type == 'roberta':
loss, _, _ = model(source_ids=source_ids, source_mask=source_mask,
target_ids=target_ids, target_mask=target_mask)
else:
outputs = model(input_ids=source_ids, attention_mask=source_mask,
labels=target_ids, decoder_attention_mask=target_mask)
loss = outputs.loss
eval_loss += loss.item()
batch_num += 1
# Pring loss of dev dataset
eval_loss = eval_loss / batch_num
result = {'cur_task': cur_task,
'global_step': global_step,
'eval_ppl': round(np.exp(eval_loss), 5),
'train_loss': round(train_loss, 5)}
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
logger.info(" " + "*" * 20)
if args.data_num == -1:
tb_writer.add_scalar('dev_ppl_{}'.format(cur_task),
round(np.exp(eval_loss), 5),
global_step)
if eval_loss < best_loss[cur_task]:
logger.info(" Best ppl:%s", round(np.exp(eval_loss), 5))
logger.info(" " + "*" * 20)
fa_dict[cur_task].write(
"[%d: %s] Best ppl changed into %.4f\n" % (global_step, cur_task, np.exp(eval_loss)))
best_loss[cur_task] = eval_loss
# Save best checkpoint for best ppl
output_dir = os.path.join(args.output_dir, 'checkpoint-best-ppl', cur_task)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.data_num == -1 or args.always_save_model:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the best ppl model into %s", output_model_file)
if args.do_eval_bleu:
eval_examples_data_dict = load_and_cache_multi_gen_data(args, pool, tokenizer, 'dev',
only_src=True, is_sample=True)
for cur_task in eval_examples_data_dict.keys():
if is_early_stop[cur_task]:
continue
eval_examples, eval_data = eval_examples_data_dict[cur_task]
# pdb.set_trace()
result = eval_bleu(args, eval_data, eval_examples, model, tokenizer, 'dev', cur_task,
criteria='e{}'.format(global_step))
dev_bleu, dev_em = result['bleu'], result['em']
if args.task == 'summarize':
dev_bleu_em = dev_bleu
elif args.task in ['defect', 'clone']:
dev_bleu_em = dev_em
else:
dev_bleu_em = dev_bleu + dev_em
if args.data_num == -1:
tb_writer.add_scalar('dev_bleu_em_{}'.format(cur_task), dev_bleu_em, global_step)
if dev_bleu_em > best_bleu_em[cur_task]:
not_bleu_em_inc_cnt[cur_task] = 0
logger.info(" [%d: %s] Best bleu+em: %.2f (bleu: %.2f, em: %.2f)",
global_step, cur_task, dev_bleu_em, dev_bleu, dev_em)
logger.info(" " + "*" * 20)
best_bleu_em[cur_task] = dev_bleu_em
fa_dict[cur_task].write(
"[%d: %s] Best bleu+em changed into %.2f (bleu: %.2f, em: %.2f)\n" % (
global_step, cur_task, best_bleu_em[cur_task], dev_bleu, dev_em))
# Save best checkpoint for best bleu
output_dir = os.path.join(args.output_dir, 'checkpoint-best-bleu', cur_task)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.data_num == -1 or args.always_save_model:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the best bleu model into %s", output_model_file)
else:
not_bleu_em_inc_cnt[cur_task] += 1
logger.info("[%d %s] bleu/em does not increase for %d eval steps",
global_step, cur_task, not_bleu_em_inc_cnt[cur_task])
if not_bleu_em_inc_cnt[cur_task] > patience_dict[cur_task]:
logger.info("[%d %s] Early stop as bleu/em does not increase for %d eval steps",
global_step, cur_task, not_bleu_em_inc_cnt[cur_task])
is_early_stop[cur_task] = 1
fa_dict[cur_task].write(
"[%d %s] Early stop as bleu/em does not increase for %d eval steps, takes %s" %
(global_step, cur_task, not_bleu_em_inc_cnt[cur_task], get_elapse_time(t0)))
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
if global_step >= args.max_steps:
logger.info("Reach the max step: %d", args.max_steps)
break
if args.local_rank in [-1, 0] and args.data_num == -1:
tb_writer.close()
logger.info("Finish training and take %.2f", time.time() - t0)
for cur_task in all_tasks:
fa_dict[cur_task].close()
if args.do_test:
logger.info(" " + "***** Testing *****")
logger.info(" Batch size = %d", args.eval_batch_size)
eval_examples_data_dict = load_and_cache_multi_gen_data(args, pool, tokenizer, 'test', only_src=True)
all_tasks = list(eval_examples_data_dict.keys())
for cur_task in all_tasks:
summary_dir = os.path.join(args.output_dir, 'summary')
if not os.path.exists(summary_dir):
os.makedirs(summary_dir)
fa_dict[cur_task] = open(os.path.join(summary_dir, '{}_summary.log'.format(cur_task)), 'a+')
for cur_task in all_tasks:
eval_examples, eval_data = eval_examples_data_dict[cur_task]
args.task = cur_task.split('_')[0]
args.sub_task = cur_task.split('_')[-1]
for criteria in ['best-bleu', 'best-ppl', 'last']:
file = os.path.join(args.output_dir, 'checkpoint-{}/{}/pytorch_model.bin'.format(criteria, cur_task))
model.load_state_dict(torch.load(file))
result = eval_bleu(args, eval_data, eval_examples, model, tokenizer, 'test', cur_task, criteria)
test_bleu, test_em = result['bleu'], result['em']
test_codebleu = result['codebleu'] if 'codebleu' in result else 0
result_str = "[%s %s] bleu-4: %.2f, em: %.4f, codebleu: %.4f\n" % (
cur_task, criteria, test_bleu, test_em, test_codebleu)
logger.info(result_str)
fa_dict[cur_task].write(result_str)
fa.write(result_str)
if args.res_fn:
with open(args.res_fn, 'a+') as f:
f.write('[Time: {}] {}\n'.format(get_elapse_time(t0), file))
f.write(result_str)
logger.info("Finish and take {}".format(get_elapse_time(t0)))
for cur_task in all_tasks:
fa_dict[cur_task].close()
fa.write("Finish and take {}".format(get_elapse_time(t0)))
fa.close()
if __name__ == "__main__":
main()