-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprecip-map_counting&graphing.R
106 lines (87 loc) · 5.94 KB
/
precip-map_counting&graphing.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
ide.precip <- read.csv("C:/Users/ohler/Dropbox/IDE/data_processed/anpp_ppt_map_2023-01-11.csv")
library(formattable)
library(tidyr)
library(dplyr)
# calculate ppt reduction from map and percent ppt reduction from map
ide.precip$ppt.map <- ide.precip$ppt.1 - ide.precip$site_map
ide.precip$percent_ppt_red <- (ide.precip$ppt.map / ide.precip$site_map)*100
# select just control plots - not interested in drought plots for this...
ide.precip.ctrls <- subset(ide.precip, ide.precip$trt == "Control")
str(ide.precip.ctrls)
ide.precip.ctrls$ppt.map <- round(ide.precip.ctrls$ppt.map, 1)
ide.precip.ctrls$percent_ppt_red <- round(ide.precip.ctrls$percent_ppt_red, 1)
ide.precip.ctrls$mass <- round(ide.precip.ctrls$mass, 2)
ide.precip.ctrls$ppt.1 <- round(ide.precip.ctrls$ppt.1, 1)
ide.precip.ctrls$ppt.2 <- round(ide.precip.ctrls$ppt.2, 1)
ide.precip.ctrls$ppt.3 <- round(ide.precip.ctrls$ppt.3, 1)
ide.precip.ctrls$ppt.4 <- round(ide.precip.ctrls$ppt.4, 1)
# get a single value per site per year - not interested in plot-level values for this...
ide.precip.ctrls.siteavgs <- aggregate(x = ide.precip.ctrls[c("site_map", "ppt.1", "ppt.map", "percent_ppt_red", "mass")],
by = ide.precip.ctrls[c("site_code", "n_treat_years")],
FUN = mean, na.rm = TRUE)
# select values just for trt years 1, 2, 3, and 4 for now...
ide.precip.ctrls.siteavgs <- subset(ide.precip.ctrls.siteavgs,
ide.precip.ctrls.siteavgs$n_treat_years == "1" | ide.precip.ctrls.siteavgs$n_treat_years == "2"
| ide.precip.ctrls.siteavgs$n_treat_years == "3" | ide.precip.ctrls.siteavgs$n_treat_years == "4")
# pivot to wide format
ide.precip.ctrls.siteavgs.wide <- ide.precip.ctrls.siteavgs %>%
pivot_wider(names_from = n_treat_years, values_from = c(ppt.1, ppt.map, percent_ppt_red, mass))
# create subset of just sites with 4 consecutive years of extreme drought (ppt-map<0)
ide.4year.edrt.sites <- subset(ide.precip.ctrls.siteavgs.wide,
ide.precip.ctrls.siteavgs.wide$ppt.map_1 < 0 &
ide.precip.ctrls.siteavgs.wide$ppt.map_2 < 0 &
ide.precip.ctrls.siteavgs.wide$ppt.map_3 < 0 &
ide.precip.ctrls.siteavgs.wide$ppt.map_4 < 0)
#View(ide.4year.edrt.sites)
nrow(ide.4year.edrt.sites)
ide.4year.edrt.sites.df <- dplyr::select(ide.4year.edrt.sites, site_code)
# create subset of just sites with 3 consecutive years of extreme drought (ppt-map<0)
ide.3year.edrt.sites <- subset(ide.precip.ctrls.siteavgs.wide,
ide.precip.ctrls.siteavgs.wide$ppt.map_1 < 0 &
ide.precip.ctrls.siteavgs.wide$ppt.map_2 < 0 &
ide.precip.ctrls.siteavgs.wide$ppt.map_3 < 0 )#| for now, I'm only using the sites where the first three years were extreme
# ide.precip.ctrls.siteavgs.wide$ppt.map_2 < 0 &
# ide.precip.ctrls.siteavgs.wide$ppt.map_3 < 0 &
# ide.precip.ctrls.siteavgs.wide$ppt.map_4 < 0)
#View(ide.3year.edrt.sites)
nrow(ide.3year.edrt.sites)
ide.3year.edrt.sites.df <- dplyr::select(ide.3year.edrt.sites, site_code)
# create subset of just sites with 2 consecutive years of extreme drought (ppt-map<0)
ide.2year.edrt.sites <- subset(ide.precip.ctrls.siteavgs.wide,
ide.precip.ctrls.siteavgs.wide$ppt.map_1 < 0 & ide.precip.ctrls.siteavgs.wide$ppt.map_2 < 0 |
ide.precip.ctrls.siteavgs.wide$ppt.map_2 < 0 & ide.precip.ctrls.siteavgs.wide$ppt.map_3 < 0 |
ide.precip.ctrls.siteavgs.wide$ppt.map_3 < 0 & ide.precip.ctrls.siteavgs.wide$ppt.map_4 < 0)
#View(ide.2year.edrt.sites)
nrow(ide.2year.edrt.sites)
# create subset of columns for table-ing (just table-ing ppt-map in year 1-4 for now...)
vars.mm <- c('site_code', 'site_map', 'ppt.map_1', 'ppt.map_2', 'ppt.map_3', 'ppt.map_4')
ide.precip.ctrls.siteavgs.mm <- ide.precip.ctrls.siteavgs.wide[vars.mm]
ide.precip.ctrls.siteavgs.mm
ide.precip.ctrls.siteavgs.mm <- ide.precip.ctrls.siteavgs.mm %>% arrange(site_code)
yr.formatter <- formatter("span", style = x ~ style(color = ifelse(x > 0, "green", ifelse(x < 0, "red", "grey"))))
table.allsites <- formattable(ide.precip.ctrls.siteavgs.mm,
align =c("l", "c", "c", "c", "c", "c"),
list('ppt.map_1' = yr.formatter,'ppt.map_2' = yr.formatter,
'ppt.map_3' = yr.formatter,'ppt.map_4' = yr.formatter))
table.allsites
ide.4year.edrt.sites.mm <- ide.4year.edrt.sites[vars.mm]
ide.4year.edrt.sites.mm
table.4year.edrt.sites <- formattable(ide.4year.edrt.sites.mm,
align =c("l", "c", "c", "c", "c", "c"),
list('ppt.map_1' = yr.formatter,'ppt.map_2' = yr.formatter,
'ppt.map_3' = yr.formatter,'ppt.map_4' = yr.formatter))
table.4year.edrt.sites
ide.3year.edrt.sites.mm <- ide.3year.edrt.sites[vars.mm]
ide.3year.edrt.sites.mm
table.3year.edrt.sites <- formattable(ide.3year.edrt.sites.mm,
align =c("l", "c", "c", "c", "c", "c"),
list('ppt.map_1' = yr.formatter,'ppt.map_2' = yr.formatter,
'ppt.map_3' = yr.formatter,'ppt.map_4' = yr.formatter))
table.3year.edrt.sites
ide.2year.edrt.sites.mm <- ide.2year.edrt.sites[vars.mm]
ide.2year.edrt.sites.mm
table.2year.edrt.sites <- formattable(ide.2year.edrt.sites.mm,
align =c("l", "c", "c", "c", "c", "c"),
list('ppt.map_1' = yr.formatter,'ppt.map_2' = yr.formatter,
'ppt.map_3' = yr.formatter,'ppt.map_4' = yr.formatter))
table.2year.edrt.sites