Skip to content

Latest commit

 

History

History
140 lines (109 loc) · 7.84 KB

gpu.md

File metadata and controls

140 lines (109 loc) · 7.84 KB

How to run with PyTorch/XLA:GPU

PyTorch/XLA enables PyTorch users to utilize the XLA compiler which supports accelerators including TPU, GPU, and CPU. This doc will go over the basic steps to run PyTorch/XLA on a nvidia GPU instances.

Create a GPU instance

You can either use a local machine with GPU attached or a GPU VM on the cloud. For example in Google Cloud you can follow this doc to create the GPU VM.

Environment Setup

Make sure you have cuda driver installed on the host.

Docker

Pytorch/XLA currently publish prebuilt docker images and wheels with cuda11.8/12.1 and python 3.8. We recommend users to create a docker container with corresponding config. For a full list of docker images and wheels, please refer to this doc.

sudo docker pull us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.8_cuda_12.1

# Installing the NVIDIA Container Toolkit per https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
# For example
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit

# Configuring the NVIDIA Container Toolkit
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker

sudo docker run --shm-size=16g --net=host --gpus all -it -d us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.8_cuda_12.1 bin/bash
sudo docker exec -it $(sudo docker ps | awk 'NR==2 { print $1 }') /bin/bash

Note that you need to restart the docker to make gpu devices visible in the docker container. After logging into the docker, you can use nvidia-smi to verify the device is setup correctly.

(pytorch) root@20ab2c7a2d06:/# nvidia-smi
Thu Dec  8 06:24:29 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.47.03    Driver Version: 510.47.03    CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla V100-SXM2...  Off  | 00000000:00:04.0 Off |                    0 |
| N/A   36C    P0    38W / 300W |      0MiB / 16384MiB |      1%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

Check environment variable

Make sure PATH and LD_LIBRARY_PATH environment variables account for cuda. Please do a echo $PATH and echo $LD_LIBRARY_PATH to verify. If not, please follow link to do so. Example:

echo "export PATH=/usr/local/cuda-12.1/bin${PATH:+:${PATH}}" >> ~/.bashrc
echo "export LD_LIBRARY_PATH=/usr/local/cuda-12.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}" >> ~/.bashrc
source ~/.bashrc

Wheel

pip3 install torch==2.2.0
pip3 install https://storage.googleapis.com/pytorch-xla-releases/wheels/cuda/12.1/torch_xla-2.2.0-cp38-cp38-manylinux_2_28_x86_64.whl

Run a simple model

In order to run below examples, you need to clone the pytorch/xla repo to access the imagenet example(We already clone it in our docker).

(pytorch) root@20ab2c7a2d06:/# export GPU_NUM_DEVICES=1 PJRT_DEVICE=CUDA
(pytorch) root@20ab2c7a2d06:/# git clone --recursive https://github.com/pytorch/xla.git
(pytorch) root@20ab2c7a2d06:/# python xla/test/test_train_mp_imagenet.py --fake_data
==> Preparing data..
Epoch 1 train begin 06:12:38
| Training Device=xla:0/0 Epoch=1 Step=0 Loss=6.89059 Rate=2.82 GlobalRate=2.82 Time=06:13:23
| Training Device=xla:0/0 Epoch=1 Step=20 Loss=6.79297 Rate=117.16 GlobalRate=45.84 Time=06:13:36
| Training Device=xla:0/0 Epoch=1 Step=40 Loss=6.43628 Rate=281.16 GlobalRate=80.49 Time=06:13:43
| Training Device=xla:0/0 Epoch=1 Step=60 Loss=5.83108 Rate=346.88 GlobalRate=108.82 Time=06:13:49
| Training Device=xla:0/0 Epoch=1 Step=80 Loss=4.99023 Rate=373.62 GlobalRate=132.43 Time=06:13:56
| Training Device=xla:0/0 Epoch=1 Step=100 Loss=3.92699 Rate=384.33 GlobalRate=152.40 Time=06:14:02
| Training Device=xla:0/0 Epoch=1 Step=120 Loss=2.68816 Rate=388.35 GlobalRate=169.49 Time=06:14:09

AMP (AUTOMATIC MIXED PRECISION)

AMP is very useful on GPU training and PyTorch/XLA reuse Cuda's AMP rule. You can checkout our mnist example and imagenet example. Note that we also used a modified version of optimizers to avoid the additional sync between device and host.

Develop PyTorch/XLA on a GPU instance (build PyTorch/XLA from source with GPU support)

  1. Inside a GPU VM, create a docker container from a development docker image. For example:
sudo docker pull us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/development:3.8_cuda_12.1

# Installing the NVIDIA Container Toolkit per https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
# For example
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit

# Configuring the NVIDIA Container Toolkit
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker

sudo docker run --shm-size=16g --net=host --gpus all -it -d us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/development:3.8_cuda_12.1
sudo docker exec -it $(sudo docker ps | awk 'NR==2 { print $1 }') /bin/bash
  1. Build PyTorch and PyTorch/XLA from source.

Make sure PATH and LD_LIBRARY_PATH environment variables account for cuda. See the above for more info.

git clone https://github.com/pytorch/pytorch.git
cd pytorch
USE_CUDA=1 python setup.py install

git clone https://github.com/pytorch/xla.git
cd xla
XLA_CUDA=1 python setup.py install
  1. Verify if PyTorch and PyTorch/XLA have been installed successfully.

If you can run the test in the section Run a simple model successfully, then PyTorch and PyTorch/XLA should have been installed successfully.