From e2ce49c58ffbfb4a3507e2c907115d1f108a5d36 Mon Sep 17 00:00:00 2001 From: Orion Eiger Date: Fri, 2 Aug 2024 17:27:47 -0700 Subject: [PATCH] Use Pydantic models for tests --- .../pipe/base/quantum_provenance_graph.py | 2 +- tests/test_quantum_provenance_graph.py | 138 ++++++++---------- 2 files changed, 61 insertions(+), 79 deletions(-) diff --git a/python/lsst/pipe/base/quantum_provenance_graph.py b/python/lsst/pipe/base/quantum_provenance_graph.py index 2b08416ac..ae01ac282 100644 --- a/python/lsst/pipe/base/quantum_provenance_graph.py +++ b/python/lsst/pipe/base/quantum_provenance_graph.py @@ -417,7 +417,7 @@ def from_info(cls, info: DatasetInfo, producer_info: QuantumInfo) -> CursedDatas class DatasetTypeSummary(pydantic.BaseModel): """A summary of the status of all datasets of a particular type.""" - producer: str + producer: str = "" """The name of the task which produced this dataset. """ diff --git a/tests/test_quantum_provenance_graph.py b/tests/test_quantum_provenance_graph.py index 369ef4f14..e80e559af 100644 --- a/tests/test_quantum_provenance_graph.py +++ b/tests/test_quantum_provenance_graph.py @@ -31,7 +31,12 @@ import unittest -from lsst.pipe.base.quantum_provenance_graph import DatasetTypeSummary, QuantumProvenanceGraph, TaskSummary +from lsst.pipe.base.quantum_provenance_graph import ( + DatasetTypeSummary, + QuantumProvenanceGraph, + Summary, + TaskSummary, +) from lsst.pipe.base.tests import simpleQGraph from lsst.utils.tests import temporaryDirectory @@ -42,7 +47,8 @@ class QuantumProvenanceGraphTestCase(unittest.TestCase): Verify that the `QuantumProvenanceGraph` is able to extract correct information from `simpleQgraph`. - More tests are in lsst/ci_middleware/tests/test_prod_outputs.py + More tests are in lsst/ci_middleware/tests/test_prod_outputs.py and + lsst/ci_middleware/tests/test_rc2_outputs.py """ def test_qpg_reports(self) -> None: @@ -55,53 +61,30 @@ def test_qpg_reports(self) -> None: qpg = QuantumProvenanceGraph() qpg.add_new_graph(butler, qgraph) qpg.resolve_duplicates(butler) - d = qpg.to_summary(butler) - self.assertIsNotNone(d) - with open("testmodel.json", "w") as buffer: - buffer.write(d.model_dump_json(indent=2)) - summary_dict = d.model_dump() - for task in d.tasks: - self.assertIsInstance(d.tasks[task], TaskSummary) + summary = qpg.to_summary(butler) + Summary.model_validate(summary) + + TaskSummary.model_validate(summary.tasks) + for task_summary in summary.tasks.values(): # We know that we have one expected task that was not run. # As such, the following dictionary should describe all of # the mock tasks. - self.assertDictEqual( - summary_dict["tasks"][task], - { - "n_successful": 0, - "n_blocked": 0, - "n_not_attempted": 1, - "n_expected": 1, - "failed_quanta": [], - "recovered_quanta": [], - "wonky_quanta": [], - "n_wonky": 0, - "n_failed": 0, - }, - ) - for dataset in d.datasets: - self.assertIsInstance(d.datasets[dataset], DatasetTypeSummary) - self.assertListEqual( - summary_dict["datasets"][dataset]["unsuccessful_datasets"], - [{"instrument": "INSTR", "detector": 0}], + self.assertEqual( + task_summary, + TaskSummary( + n_successful=0, + n_blocked=0, + n_not_attempted=1, + n_expected=1, + failed_quanta=[], + recovered_quanta=[], + wonky_quanta=[], + n_wonky=0, + n_failed=0, + ), ) - # Check dataset counts (can't be done all in one because - # datasets have different producers), but all the counts for - # each task should be the same. - self.assertEqual(summary_dict["datasets"][dataset]["n_published"], 0) - self.assertEqual(summary_dict["datasets"][dataset]["n_unpublished"], 0) - self.assertEqual(summary_dict["datasets"][dataset]["n_published"], 0) - self.assertEqual(summary_dict["datasets"][dataset]["n_predicted_only"], 0) - self.assertEqual(summary_dict["datasets"][dataset]["n_expected"], 1) - self.assertEqual(summary_dict["datasets"][dataset]["n_published"], 0) - self.assertEqual(summary_dict["datasets"][dataset]["n_cursed"], 0) - self.assertEqual(summary_dict["datasets"][dataset]["n_published"], 0) - self.assertEqual(summary_dict["datasets"][dataset]["n_unsuccessful"], 1) - # Make sure the cursed dataset is an empty list - self.assertIsInstance(summary_dict["datasets"][dataset]["cursed_datasets"], list) - self.assertFalse(summary_dict["datasets"][dataset]["cursed_datasets"]) - # Make sure we have the right datasets based on the mock we have - for task in [ + DatasetTypeSummary.model_validate(summary.datasets) + expected_mock_datasets = [ "add_dataset1", "add2_dataset1", "task0_metadata", @@ -122,36 +105,35 @@ def test_qpg_reports(self) -> None: "add2_dataset5", "task4_metadata", "task4_log", - ]: - self.assertIn(task, list(summary_dict["datasets"].keys())) - # Make sure the expected datasets were produced by the expected tasks - for dataset in ["add_dataset1", "add2_dataset1", "task0_metadata", "task0_log"]: - self.assertEqual(summary_dict["datasets"][dataset]["producer"], "task0") - for dataset in [ - "add_dataset2", - "add2_dataset2", - "task1_metadata", - "task1_log", - ]: - self.assertEqual(summary_dict["datasets"][dataset]["producer"], "task1") - for dataset in [ - "add_dataset3", - "add2_dataset3", - "task2_metadata", - "task2_log", - ]: - self.assertEqual(summary_dict["datasets"][dataset]["producer"], "task2") - for dataset in [ - "add_dataset4", - "add2_dataset4", - "task3_metadata", - "task3_log", - ]: - self.assertEqual(summary_dict["datasets"][dataset]["producer"], "task3") - for dataset in [ - "add_dataset5", - "add2_dataset5", - "task4_metadata", - "task4_log", - ]: - self.assertEqual(summary_dict["datasets"][dataset]["producer"], "task4") + ] + for dataset_type_name, dataset_type_summary in summary.datasets.items(): + self.assertListEqual( + dataset_type_summary.unsuccessful_datasets, + [{"instrument": "INSTR", "detector": 0}], + ) + # Check dataset counts (can't be done all in one because + # datasets have different producers), but all the counts for + # each task should be the same. + self.assertEqual(dataset_type_summary.n_published, 0) + self.assertEqual(dataset_type_summary.n_unpublished, 0) + self.assertEqual(dataset_type_summary.n_predicted_only, 0) + self.assertEqual(dataset_type_summary.n_expected, 1) + self.assertEqual(dataset_type_summary.n_cursed, 0) + self.assertEqual(dataset_type_summary.n_unsuccessful, 1) + # Make sure the cursed dataset is an empty list + self.assertListEqual(dataset_type_summary.cursed_datasets, []) + # Make sure we have the right datasets based on our mock + self.assertIn(dataset_type_name, expected_mock_datasets) + # Make sure the expected datasets were produced by the expected + # tasks + match dataset_type_name: + case name if name in ["add_dataset1", "add2_dataset1", "task0_metadata", "task0_log"]: + self.assertEqual(dataset_type_summary.producer, "task0") + case name if name in ["add_dataset2", "add2_dataset2", "task1_metadata", "task1_log"]: + self.assertEqual(dataset_type_summary.producer, "task1") + case name if name in ["add_dataset3", "add2_dataset3", "task2_metadata", "task2_log"]: + self.assertEqual(dataset_type_summary.producer, "task2") + case name if name in ["add_dataset4", "add2_dataset4", "task3_metadata", "task3_log"]: + self.assertEqual(dataset_type_summary.producer, "task3") + case name if name in ["add_dataset5", "add2_dataset5", "task4_metadata", "task4_log"]: + self.assertEqual(dataset_type_summary.producer, "task4")