From e2a2d1aab52ace2ba801e22f8857c86aebcc8d8f Mon Sep 17 00:00:00 2001 From: Jim Bosch Date: Wed, 19 May 2021 13:50:27 -0400 Subject: [PATCH] Allow prerequisite inputs to be optional, but assume they are required. --- python/lsst/pipe/base/connectionTypes.py | 16 +++++++++++++++- 1 file changed, 15 insertions(+), 1 deletion(-) diff --git a/python/lsst/pipe/base/connectionTypes.py b/python/lsst/pipe/base/connectionTypes.py index 7a212366f..04b49ab5b 100644 --- a/python/lsst/pipe/base/connectionTypes.py +++ b/python/lsst/pipe/base/connectionTypes.py @@ -28,7 +28,7 @@ import dataclasses import typing -from typing import Callable, Iterable, Optional +from typing import Callable, ClassVar, Iterable, Optional from lsst.daf.butler import ( CollectionSearch, @@ -194,6 +194,12 @@ class BaseInput(DimensionedConnection): """ deferLoad: bool = False + optional: ClassVar[bool] = False + """Quanta are not generated and never (fully) executed when there are no + datasets for a non-optional input connection, and most input connections + cannot be made optional. + """ + @dataclasses.dataclass(frozen=True) class Input(BaseInput): @@ -225,6 +231,12 @@ class PrerequisiteInput(BaseInput): using the DatasetType, registry, quantum dataId, and input collections passed to it. If no function is specified, the default temporal spatial lookup will be used. + optional : `bool`, optional + If `True` (`False` is default), generate quanta for this task even + when no input datasets for this connection exist. Missing optional + inputs will cause `ButlerQuantumContext.get` to return `None` or a + smaller container (never a same-size container with some `None` + elements) during execution. Notes ----- @@ -249,10 +261,12 @@ class PrerequisiteInput(BaseInput): between dimensions are not desired (e.g. a task that wants all detectors in each visit for which the visit overlaps a tract, not just those where that detector+visit combination overlaps the tract). + - Prerequisite inputs may be optional (regular inputs are never optional). """ lookupFunction: Optional[Callable[[DatasetType, Registry, DataCoordinate, CollectionSearch], Iterable[DatasetRef]]] = None + optional: bool = False @dataclasses.dataclass(frozen=True)