forked from DFKI-NLP/cross-ling-adr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_few_shot_classifier.py
446 lines (359 loc) · 14.6 KB
/
train_few_shot_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
"""..."""
import argparse
import colorama
import data
import json
import logging
import numpy as np
import os
import random
import sys
import time
import torch
import wandb
from datetime import datetime
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedShuffleSplit
from transformers import AdamW
from utils import training_utils as train_utils
from utils.colors import GREEN
from utils.colors import RED
from utils.colors import RESET
from utils.evaluate import evaluate_on_testset
from utils.few_shot_splits import FewShotSplitter
from utils.trainer import train_model
colorama.init()
wandb.init(project="final_binary_classification")
DATE = datetime.now().strftime("%d_%m_%Y_%H_%M")
logging.basicConfig(level=logging.INFO)
local_rank = int(os.environ.get("LOCAL_RANK", -1))
if torch.cuda.is_available():
device = torch.device("cuda", local_rank)
else:
device = torch.device("cpu")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config", default=None, help="Path to config file.")
parser.add_argument(
"-sp",
"--save_probas",
action="store_true",
help="Save probas and true labels for visualization.",
)
parser.add_argument(
"-debug", "--debug", action="store_true", help="Run with test data."
)
args = parser.parse_args()
with open(args.config, "r") as read_handle:
config = json.load(read_handle)
cross_val = config["cross_val"]
data_type = config["data_type"]
epochs = config["epochs"]
debug = config["debug"]
min_length = config["min_length"]
model_name = config["model_name"]
model_path = config["model_path"]
patience = config["patience"]
test_data = config["test_data"]
train_dev_data = config["train_dev_data"]
batch_size = config["batch_size"]
max_length = config["max_length"]
learning_rate = config["learning_rate"]
train_sampler = config["train_sampler"]
up_down_sample_data = config["augment_data"]
threshold = config["sampling_threshold"]
t5_model = config["t5_model"]
num_shots = config["shots"]
mode = config["mode"]
pos_max = config.get("pos_max", 0)
additional_negative_samples = config.get("additional_neg", 0)
if config["debug"]:
logging.info(f"{RED} Running in debug mode.{RESET}")
epochs = 2
batch_size = 4
min_length = 3
max_length = 50
train_sampler = "weighted"
# train_dev_data = "data/cadec_segura_smm4h20_traindev_balanced.jsonl"
# test_data = "data/cadec_segura_smm4h20_testset_balanced.jsonl"
learning_rate = 2e-5
model_path = "fine_tuned/model_weights_08_11_2021_16_35.pth"
model_name = "xlmroberta"
up_down_sample_data = True
threshold = 0.5
t5_model = "t5"
seed = 42
test_size = 0.2
cross_val = 2
train_dev_data = "data/old/forum_data/combined/TEST_traindevset_combined.jsonl"
test_data = "data/old/forum_data/combined/TEST_testset_combined.jsonl"
source_traindev_data = (
"data/old/forum_data/combined/TEST_traindevset_combined.jsonl"
)
num_shots = 2
mode = "add_neg_plus_source"
pos_max = 1
additional_negative_samples = 5
additional_source = 4
else:
wandb.config.cross_val = cross_val
wandb.config.epochs = epochs
wandb.config.min_length = min_length
wandb.config.model_name = model_name
wandb.config.model_path = model_path
wandb.config.patience = patience
wandb.config.test_data = test_data
wandb.config.train_dev_data = train_dev_data
wandb.config.few_shot_mode = mode
wandb.config.num_shots = shots
# wandb.config.batch_size = batch_size
# wandb.config.learning_rate = learning_rate
# wandb.config.max_length = max_length
# wandb.config.train_sampler = train_sampler
# wandb.config.up_down_sample_data = up_down_sample_data
sweep_config = wandb.config
batch_size = sweep_config["batch_size"]
max_length = sweep_config["max_length"]
learning_rate = sweep_config["learning_rate"]
train_sampler = sweep_config["train_sampler"]
threshold = sweep_config["sampling_threshold"]
t5_model = sweep_config["t5_model"]
seed = sweep_config["seed"]
up_down_sample_data = sweep_config["augment_data"]
logging.info(f"{GREEN} Up/Downsampling method {up_down_sample_data}\n{RESET}")
logging.info(f"{GREEN} Training with {model_name}\n{RESET}")
# get training data, labels, and transformed labels for stratification in
# CV
docs, labels, _, _ = data.prepare_data(
train_dev_data, min_num_tokens=min_length, max_num_tokens=max_length
)
# take only the texts from the dictionary
sentences = [doc["text"] for doc in docs]
(input_ids, attention_masks, labels) = data.tokenize(
model_name=model_name,
sentences=sentences,
labels=labels,
max_length=max_length,
)
global_val_loss = 0
global_train_loss = 0
macro_F1 = 0
global_macro_F1 = 0
if cross_val:
lowest_loss = float("inf")
best_model = None
# make sure to keep the seed for the data splits
splitter = FewShotSplitter(
num_splits=cross_val, num_shots=num_shots, random_state=seed, shuffle=True
)
if mode == "per_class":
logging.info(f"{GREEN} Running in '{mode}' mode.\n{RESET}")
folds = splitter.split_per_class(
list_of_sentences=docs, list_of_labels=labels
)
elif mode == "as_distribution":
logging.info(f"{GREEN} Running in '{mode}' mode.\n{RESET}")
folds = splitter.split_according_to_distribution(
list_of_sentences=docs, list_of_labels=labels, pos_max=pos_max
)
elif mode == "random":
logging.info(f"{GREEN} Running in '{mode}' mode.\n{RESET}")
folds = splitter.split_randomly(
list_of_sentences=docs, list_of_labels=labels
)
elif mode == "add_neg":
logging.info(f"{GREEN} Running in '{mode}' mode.\n{RESET}")
folds = splitter.split_and_add_negatives(
list_of_sentences=docs,
list_of_labels=labels,
num_added=additional_negative_samples,
)
elif mode == "add_neg_plus_source":
logging.info(f"{GREEN} Running in '{mode}' mode.\n{RESET}")
source_docs, source_labels, _, _ = data.prepare_data(
source_traindev_data,
min_num_tokens=min_length,
max_num_tokens=max_length,
)
source_sentences = [doc["text"] for doc in source_docs]
(source_input_ids, source_attention_masks, source_labels) = data.tokenize(
model_name=model_name,
sentences=source_sentences,
labels=source_labels,
max_length=max_length,
)
folds = splitter.split_and_add_negatives(
list_of_sentences=docs,
list_of_labels=labels,
num_added=additional_negative_samples,
)
else:
logging.warning(
f"{RED} No mode for splitting given. Using per class few shot split.{RESET}"
)
for fold_num, (train_index, val_index) in enumerate(folds):
logging.info(
f"\n{GREEN}======== Training on fold {fold_num + 1} /"
f" {cross_val} ========\n{RESET}"
)
wandb.log({"current_fold": fold_num + 1})
input_ids_train = input_ids[train_index]
attention_masks_train = attention_masks[train_index]
labels_train = labels[train_index]
input_ids_val = input_ids[val_index]
attention_masks_val = attention_masks[val_index]
labels_val = labels[val_index]
if mode == "add_neg_plus_source":
# get random indices from the source language data (do not sort!)
source_idx = random.sample(
range(0, len(source_docs) - 1), additional_source * 2
)
print(f"source lang idx: {source_idx}")
# divide the indices in half to get one for train and one for val
source_idx_train = source_idx[:additional_source]
source_idx_val = source_idx[additional_source:]
# get the source input data for train and val
source_input_ids_train = source_input_ids[source_idx_train]
source_attention_masks_train = source_attention_masks[source_idx_train]
source_labels_train = source_labels[source_idx_train]
source_input_ids_val = source_input_ids[source_idx_val]
source_attention_masks_val = source_attention_masks[source_idx_val]
source_labels_val = source_labels[source_idx_val]
# add the source data to the shot train split
input_ids_train = torch.cat(
[input_ids_train, source_input_ids_train], dim=0
)
attention_masks_train = torch.cat(
[attention_masks_train, source_attention_masks_train], dim=0
)
labels_train = torch.cat([labels_train, source_labels_train], dim=0)
# add the source data to the shot val split
input_ids_val = torch.cat([input_ids_val, source_input_ids_val], dim=0)
attention_masks_val = torch.cat(
[attention_masks_val, source_attention_masks_val], dim=0
)
labels_val = torch.cat([labels_val, source_labels_val], dim=0)
logging.info(f"{GREEN} Adding source data done.{RESET}")
wandb.log({f"fold_{fold_num}": {"train_data_size": len(input_ids_train)}})
train_loader = data.get_data_loader(
input_ids_train,
attention_masks_train,
labels_train,
batch_size=batch_size,
shuffle=True,
sampler=train_sampler,
model_name=model_name,
)
# we do not need sample weights in the validation data
val_loader = data.get_data_loader(
input_ids_val,
attention_masks_val,
labels_val,
batch_size=batch_size,
shuffle=True,
sampler=False,
)
model = train_utils.load_fine_tuned_model(
model_id=model_path, model_name=model_name
)
print("Before freezing")
for name, param in model.named_parameters():
print(name, param)
# freeze everything except the classifier
for param in model.bert.bert.parameters():
param.requires_grad = False
print("After freezing")
for name, param in model.named_parameters():
print(name, param)
model.to(device)
optimizer = AdamW(
model.parameters(), lr=learning_rate, eps=1e-8 # lr=2e-5,
)
# fine tune model
(newest_model, avg_val_loss, avg_train_loss, new_macro_F1) = train_model(
model=model,
train_dataloader=train_loader,
validation_dataloader=val_loader,
epochs=epochs,
optimizer=optimizer,
patience=patience,
fold=fold_num + 1,
seed=seed,
)
logging.info(f"{GREEN} new macro F1: {new_macro_F1}{RESET}")
global_val_loss += avg_val_loss
global_train_loss += avg_train_loss
global_macro_F1 += new_macro_F1
if avg_val_loss < lowest_loss:
wandb.log({"fold_with_lowest_loss": fold_num})
lowest_loss = avg_val_loss
# best_model = newest_model
# update the model if the F1 score increases
if new_macro_F1 > macro_F1:
wandb.log({"fold_with_highest_F1": fold_num})
macro_F1 = new_macro_F1
best_model = newest_model
wandb.log(
{
"global_val_loss": global_val_loss / cross_val,
"global_train_loss": global_train_loss / cross_val,
"global_macro_F1": global_macro_F1 / cross_val,
}
)
# no cross validation
else:
train_dataset, val_dataset = data.build_dataset(
input_ids=input_ids, attention_masks=attention_masks, labels=labels
)
train_loader, val_loader = data.create_data_loaders(
train_dataset=train_dataset,
val_dataset=val_dataset,
batch_size=batch_size,
sampler=train_sampler,
)
# Loading fine-tuned model
logging.info(f"{GREEN} Loading fine-tuned model from {model_path}{RESET}")
model = train_utils.load_fine_tuned_model(
model_id=model_path, model_name=model_name
)
optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-8)
best_model, val_loss = train_model(
model=model,
train_dataloader=train_loader,
validation_dataloader=val_loader,
epochs=epochs,
optimizer=optimizer,
)
# ----------------------------------------------------------------------- #
# save the best model with a model identifier containing the date
new_model_path = "/".join(model_path.split("/")[:-1])
new_model_id = os.path.join(new_model_path, f"model_weights_few_shot_{DATE}.pth")
wandb.log({"model_id_new": new_model_id})
logging.info(f"{GREEN} Model ID: {new_model_id}{RESET}")
train_utils.save_fine_tuned_model(best_model, model_id=new_model_id)
# get test data
(
test_input_ids,
test_attention_masks,
test_labels,
langs_test,
) = data.prepare_test_data(
model_name=model_name,
test_data_file=test_data,
min_num_tokens=min_length,
max_num_tokens=max_length,
)
test_dataloader, num_test_sentences = data.get_test_data_loader(
input_ids=test_input_ids,
attention_masks=test_attention_masks,
labels=test_labels,
batch_size=batch_size,
)
# run model on test data
evaluate_on_testset(
model=best_model,
prediction_dataloader=test_dataloader,
num_sentences=num_test_sentences,
model_name=model_name,
languages=langs_test,
)