-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathops_.py
75 lines (62 loc) · 3.01 KB
/
ops_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 21 12:42:20 2017
@author: fankai
"""
import tensorflow as tf
import numpy as np
import math
def linear(x, output_dim, name='linear'):
"""
x : batch_size * input_dim
affine transformation Wx+b
"""
input_dim = x.get_shape().as_list()[1]
thres = np.sqrt(6.0 / (input_dim + output_dim))
W = tf.get_variable("W", [input_dim, output_dim], initializer=tf.random_uniform_initializer(minval=-thres, maxval=thres))
b = tf.get_variable("b", [output_dim], initializer=tf.constant_initializer(0.0))
return tf.matmul(x, W) + b
def conv2d(x, x_filters, n_filers,
k_h=5, k_w=5, stride_h=2, stride_w=2, stddev=0.02,
bias=True, padding='SAME', name='conv2d'):
# input_size = k_h * k_w * x_filters
# W_initializer = tf.random_uniform_initializer(-1.0 / math.sqrt(input_size), 1.0 / math.sqrt(input_size))
# W = tf.get_variable('W', [k_h, k_w, x_filters, n_filers], initializer=W_initializer)
W = tf.get_variable('W', [k_h, k_w, x_filters, n_filers], initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = tf.nn.conv2d(x, W, strides=[1, stride_h, stride_w, 1], padding=padding)
if bias:
# b = tf.get_variable('b', [n_filers], initializer=tf.constant_initializer(0.0))
b = tf.get_variable('b', [n_filers], initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = conv + b
return conv
def deconv2d(x, output_shape,
k_h=5, k_w=5, stride_h=2, stride_w=2, stddev=0.02,
bias=True, padding='SAME', name='deconv2d'):
in_C = x.get_shape().as_list()[-1]
# input_size = k_h * k_w * in_C
# W_initializer = tf.random_uniform_initializer(-1.0 / math.sqrt(input_size), 1.0 / math.sqrt(input_size))
# W = tf.get_variable('W', [k_h, k_w, output_shape[-1], in_C], initializer=W_initializer)
W = tf.get_variable('W', [k_h, k_w, output_shape[-1], in_C], initializer=tf.truncated_normal_initializer(stddev=stddev))
deconv = tf.nn.conv2d_transpose(x, W, output_shape, strides=[1, stride_h, stride_w, 1], padding=padding)
if bias:
# b = tf.get_variable('b', [output_shape[-1]], initializer=tf.constant_initializer(0.0))
b = tf.get_variable('b', [output_shape[-1]], initializer=tf.truncated_normal_initializer(stddev=stddev))
deconv = deconv + b
return deconv
def lrelu(x, leaky=0.2):
return tf.maximum(x, leaky*x)
def iterate_minibatches_u(data, batchsize, shuffle=False):
"""
This function tries to iterate unlabeled data in mini-batch
for batch_data in iterate_minibatches_u(data, batchsize, True):
#processing batch_data
"""
if shuffle:
indices = np.arange(len(data))
np.random.RandomState(np.random.randint(1,2147462579)).shuffle(indices)
for start_idx in xrange(0, len(data) - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield data[excerpt]