-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtext_similarity.py
226 lines (187 loc) · 8.7 KB
/
text_similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# This to detect the text distance between two urls
#
# 1、jieba分词(不用jieba内置的tf_idf计算词频,而用sklearn计算)
# 2、sklearn计算tf-idf
# CountVectorizer是通过fit_transform函数将文本中的词语转换为词频矩阵,
# 矩阵元素a[i][j] 表示j词在第i个文本下的词频。即各个词语出现的次数,
# 通过get_feature_names()可看到所有文本的关键字,通过toarray()可看到词频矩阵的结果
# icbc官网和百度的cos相似度是0.04, icbc官网和ccb官网的相似度是0.19
# http://www.ccb.com/cn/home/indexv3.html
import os
import glob
import math
import chardet
import config as cfg
import pandas as pd
import re
import jieba
import urllib.request
from urllib import error
from sklearn.feature_extraction.text import TfidfVectorizer
from chardet.universaldetector import UniversalDetector
import numpy as np
import subprocess
keyword_num = 5
samples_dir = 'samples_dir'
def readstoplist():
stopwordspath = 'stopwords.txt'
stwlist = [line.strip()
for line in open(stopwordspath, 'r', encoding='utf-8').readlines()]
return stwlist
def numerator(vector1, vector2):
#分子
return sum(a * b for a, b in zip(vector1, vector2))
def denominator(vector):
#分母
return math.sqrt(sum(a * b for a,b in zip(vector, vector)))
def run(vector1, vector2):
return numerator(vector1, vector2) / (denominator(vector1) * denominator(vector2))
def get_chinese_content(raw_page_content):
content_list = re.findall(u"[\u4e00-\u9fa5]+", raw_page_content)
return "".join(content_list)
def get_seg_list(chinese_content):
return jieba.cut(chinese_content)
def text_similarity(url_to_detect):
print('In text_similarity, start')
# corpus_english = ['The dog ate a sandwich and I ate a sandwich', 'The wizard transfigured a sandwich']
# corpus_chinese = ['我喜欢中国,也喜欢美国。', '我喜欢足球,不喜欢篮球。']
# corpus = [' '.join(get_seg_list(each)) for each in corpus_chinese]
# 以下隐掉是因为事先把icbc和ccb的官方网页保存到txt里了start
# url_0 = 'http://www.icbc.com.cn/icbc'
# req_0 = urllib.request.Request(url_0)
# page_0 = urllib.request.urlopen(req_0)
# content_bytes_0 = page_0.read()
# content_str_0 = content_bytes_0.decode('utf-8')
#
# url_1 = 'http://www.ccb.com/cn/home/indexv3.html'
# req_1 = urllib.request.Request(url_1)
# page_1 = urllib.request.urlopen(req_1)
# content_bytes_1 = page_1.read()
# content_str_1= content_bytes_1.decode('utf-8')
# print(type(content_str_1))
# end
with open('icbc_content_str.txt', 'r', encoding='utf-8') as f1:
content_str_0 = f1.read()
print('f1 successfully ')
f1.close()
with open('ccb_content_str.txt', 'r', encoding='utf-8') as f2:
content_str_1 = f2.read()
print('f2 successfully ')
f2.close()
try:
req_to_detect = urllib.request.Request(url_to_detect)
page_to_detect= urllib.request.urlopen(req_to_detect)
content_bytes_to_detect = page_to_detect.read()
content_str_to_detect = content_bytes_to_detect.decode('utf-8')
print(type(content_str_to_detect))
corpus = [' '.join(get_seg_list(get_chinese_content(content_str_0))),
' '.join(get_seg_list(get_chinese_content(content_str_1))),
' '.join(get_seg_list(get_chinese_content(content_str_to_detect)))]
# print('corpus', corpus)
# icbc官网加上stopwords词库的大小从209到188,如果不加,有的词也会停用,不知是否是内置已经有了部分停用词
vectorizer = TfidfVectorizer(stop_words=readstoplist())
tf_idf_matrix = vectorizer.fit_transform(corpus).toarray()
vocabulary = vectorizer.vocabulary_
words = vectorizer.get_feature_names()
# print(tf_idf_matrix)
print('词库', len(words))
# 待检测的url分别与icbc,ccb的距离
# 矩阵的第一行是icbc的tf_idf向量,第二行是ccb的tf_idf向量,最后一行是待检测的文档的tf_idf向量
max_cos_dis = 0
max_cos_index = 0
bank_num = len(cfg.bank)
for i in range(0, bank_num):
cos_dis = run(tf_idf_matrix[i], tf_idf_matrix[bank_num])
if cos_dis >= max_cos_dis:
max_cos_dis = cos_dis
max_cos_index = i
if max_cos_dis >= 0.5:
text_identity = max_cos_index
print('最大的余弦相似度:%.4f,判断出来的bank key:%d' % (max_cos_dis, max_cos_index))
print('In text_similarity, end')
return text_identity
else:
print('余弦相似度小于0.5,返回INF', max_cos_dis)
return float('inf')
except error.HTTPError as httpe:
print('In text_similarity:打不开待查询的网页,http返回错误代码', httpe)
return float('inf')
except error.URLError as urle:
print('In text_similarity:打不开待查询的网页,打不开地址', urle)
return float('inf')
def text_check(url_to_detect):
dir_name = re.sub('[^a-zA-Z0-9]', '', url_to_detect)
to_check_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "webpages", dir_name)
to_check_file = dir_name + '.html'
print('待检测目录', to_check_dir)
print('待检测文件', to_check_file)
corpus = []
for root, dir, files in os.walk(samples_dir):
for fname in files:
try:
if fname.endswith('.txt'):
# print(os.path.join(root, fname))
freader = open(os.path.join(root, fname), 'r', encoding='utf8')
ftext = freader.read()
freader.close()
corpus.append(' '.join(get_seg_list(get_chinese_content(ftext))))
# 假设corpus有n行,前n-1行是已知的训练样本,最后一行是待判断的
except OSError as ose:
print('read txt error', ose)
print('样本corpus的行数', len(corpus))
try:
with open(os.path.join(to_check_dir, to_check_file), 'r', encoding='utf-8') as fcheck:
to_check_text = fcheck.read()
fcheck.close()
corpus.append(' '.join(get_seg_list(get_chinese_content(to_check_text))))
print('样本corpus加上待检测文本的行数', len(corpus))
except Exception as e: # 读取保存成的utf8文件
print(e)
try:
with open(os.path.join(to_check_dir, dir_name+'utf8.html'), 'r', encoding='utf-8') as fcheck:
to_check_text = fcheck.read()
fcheck.close()
corpus.append(' '.join(get_seg_list(get_chinese_content(to_check_text))))
print('样本corpus加上待检测文本的行数', len(corpus))
except Exception as e:
pass
vectorizer = TfidfVectorizer(stop_words=readstoplist())
tf_idf_matrix = vectorizer.fit_transform(corpus).toarray()
# tf_idf_matrix.shape 种类数*词库中词的数量
vocabulary = vectorizer.vocabulary_
words = vectorizer.get_feature_names()
print('训练和测试的总数量', len(words))
print('初始矩阵的大小:样本数*词库数', tf_idf_matrix.shape)
# 对每一行都要提取其中最大的20个关键字,要取数值最大的tf_idf及其对应的关键字
desc_index = np.argsort(-tf_idf_matrix, axis=1) # 按行排序,降序排序,返回的是每行的索引
top_keyword = []
for i in range(tf_idf_matrix.shape[0]):
for j in range(keyword_num):
top_keyword.append(words[desc_index[i][j]])
top_keyword = list(set(top_keyword))
print('top20关键字的个数', len(top_keyword))
top_arr = np.ndarray([tf_idf_matrix.shape[0], len(top_keyword)])
for row in range(tf_idf_matrix.shape[0]):
for p in range(len(top_keyword)):
for q in range(len(words)):
if top_keyword[p] == words[q]:
top_arr[row, p] = tf_idf_matrix[row, q]
print('重要关键字的矩阵大小及具体值:样本数*top20', top_arr.shape)
# 求文档的平均向量
sample_text_mean = top_arr[:-1].mean(axis=0)
print('前n-1行的平均向量', sample_text_mean.shape, sample_text_mean)
check_text = top_arr[-1]
print('最后一行的向量', check_text)
cos_dis = run(sample_text_mean, check_text)
print('余弦相似度', cos_dis)
if cos_dis >= 0.5:
text_identity = 0
else:
text_identity = float('inf')
return text_identity
if __name__ == '__main__':
samples_dir = 'samples_dir'
to_check_dir = 'to_check_dir'
to_check_file = 'test.txt'
url_to_detect = 'http://www.baidu.com'
text_check(url_to_detect)