forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IndexIVF.cpp
585 lines (471 loc) · 16.6 KB
/
IndexIVF.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include "IndexIVF.h"
#include <cstdio>
#include "utils.h"
#include "hamming.h"
#include "FaissAssert.h"
#include "IndexFlat.h"
#include "AuxIndexStructures.h"
namespace faiss {
using ScopedIds = InvertedLists::ScopedIds;
using ScopedCodes = InvertedLists::ScopedCodes;
/*****************************************
* Level1Quantizer implementation
******************************************/
Level1Quantizer::Level1Quantizer (Index * quantizer, size_t nlist):
quantizer (quantizer),
nlist (nlist),
quantizer_trains_alone (0),
own_fields (false),
clustering_index (nullptr)
{
// here we set a low # iterations because this is typically used
// for large clusterings (nb this is not used for the MultiIndex,
// for which quantizer_trains_alone = true)
cp.niter = 10;
}
Level1Quantizer::Level1Quantizer ():
quantizer (nullptr),
nlist (0),
quantizer_trains_alone (0), own_fields (false),
clustering_index (nullptr)
{}
Level1Quantizer::~Level1Quantizer ()
{
if (own_fields) delete quantizer;
}
void Level1Quantizer::train_q1 (size_t n, const float *x, bool verbose, MetricType metric_type)
{
size_t d = quantizer->d;
if (quantizer->is_trained && (quantizer->ntotal == nlist)) {
if (verbose)
printf ("IVF quantizer does not need training.\n");
} else if (quantizer_trains_alone == 1) {
if (verbose)
printf ("IVF quantizer trains alone...\n");
quantizer->train (n, x);
quantizer->verbose = verbose;
FAISS_THROW_IF_NOT_MSG (quantizer->ntotal == nlist,
"nlist not consistent with quantizer size");
} else if (quantizer_trains_alone == 0) {
if (verbose)
printf ("Training level-1 quantizer on %ld vectors in %ldD\n",
n, d);
Clustering clus (d, nlist, cp);
quantizer->reset();
if (clustering_index) {
clus.train (n, x, *clustering_index);
quantizer->add (nlist, clus.centroids.data());
} else {
clus.train (n, x, *quantizer);
}
quantizer->is_trained = true;
} else if (quantizer_trains_alone == 2) {
if (verbose)
printf (
"Training L2 quantizer on %ld vectors in %ldD%s\n",
n, d,
clustering_index ? "(user provided index)" : "");
FAISS_THROW_IF_NOT (metric_type == METRIC_L2);
Clustering clus (d, nlist, cp);
if (!clustering_index) {
IndexFlatL2 assigner (d);
clus.train(n, x, assigner);
} else {
clus.train(n, x, *clustering_index);
}
if (verbose)
printf ("Adding centroids to quantizer\n");
quantizer->add (nlist, clus.centroids.data());
}
}
/*****************************************
* IndexIVF implementation
******************************************/
IndexIVF::IndexIVF (Index * quantizer, size_t d,
size_t nlist, size_t code_size,
MetricType metric):
Index (d, metric),
Level1Quantizer (quantizer, nlist),
invlists (new ArrayInvertedLists (nlist, code_size)),
own_invlists (true),
code_size (code_size),
nprobe (1),
max_codes (0),
maintain_direct_map (false)
{
FAISS_THROW_IF_NOT (d == quantizer->d);
is_trained = quantizer->is_trained && (quantizer->ntotal == nlist);
// Spherical by default if the metric is inner_product
if (metric_type == METRIC_INNER_PRODUCT) {
cp.spherical = true;
}
}
IndexIVF::IndexIVF ():
invlists (nullptr), own_invlists (false),
code_size (0),
nprobe (1), max_codes (0),
maintain_direct_map (false)
{}
void IndexIVF::add (idx_t n, const float * x)
{
add_with_ids (n, x, nullptr);
}
void IndexIVF::make_direct_map (bool new_maintain_direct_map)
{
// nothing to do
if (new_maintain_direct_map == maintain_direct_map)
return;
if (new_maintain_direct_map) {
direct_map.resize (ntotal, -1);
for (size_t key = 0; key < nlist; key++) {
size_t list_size = invlists->list_size (key);
ScopedIds idlist (invlists, key);
for (long ofs = 0; ofs < list_size; ofs++) {
FAISS_THROW_IF_NOT_MSG (
0 <= idlist [ofs] && idlist[ofs] < ntotal,
"direct map supported only for seuquential ids");
direct_map [idlist [ofs]] = key << 32 | ofs;
}
}
} else {
direct_map.clear ();
}
maintain_direct_map = new_maintain_direct_map;
}
void IndexIVF::search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const
{
long * idx = new long [n * nprobe];
ScopeDeleter<long> del (idx);
float * coarse_dis = new float [n * nprobe];
ScopeDeleter<float> del2 (coarse_dis);
double t0 = getmillisecs();
quantizer->search (n, x, nprobe, coarse_dis, idx);
indexIVF_stats.quantization_time += getmillisecs() - t0;
t0 = getmillisecs();
invlists->prefetch_lists (idx, n * nprobe);
search_preassigned (n, x, k, idx, coarse_dis,
distances, labels, false);
indexIVF_stats.search_time += getmillisecs() - t0;
}
void IndexIVF::search_preassigned (idx_t n, const float *x, idx_t k,
const idx_t *keys,
const float *coarse_dis ,
float *distances, idx_t *labels,
bool store_pairs,
const IVFSearchParameters *params) const
{
long nprobe = params ? params->nprobe : this->nprobe;
long max_codes = params ? params->max_codes : this->max_codes;
size_t nlistv = 0, ndis = 0, nheap = 0;
using HeapForIP = CMin<float, idx_t>;
using HeapForL2 = CMax<float, idx_t>;
#pragma omp parallel reduction(+: nlistv, ndis, nheap)
{
InvertedListScanner *scanner = get_InvertedListScanner(store_pairs);
ScopeDeleter1<InvertedListScanner> del(scanner);
#pragma omp for
for (size_t i = 0; i < n; i++) {
// loop over queries
const float * xi = x + i * d;
scanner->set_query (xi);
const long * keysi = keys + i * nprobe;
float * simi = distances + i * k;
long * idxi = labels + i * k;
if (metric_type == METRIC_INNER_PRODUCT) {
heap_heapify<HeapForIP> (k, simi, idxi);
} else {
heap_heapify<HeapForL2> (k, simi, idxi);
}
long nscan = 0;
// loop over probes
for (size_t ik = 0; ik < nprobe; ik++) {
long key = keysi[ik]; /* select the list */
if (key < 0) {
// not enough centroids for multiprobe
continue;
}
FAISS_THROW_IF_NOT_FMT (key < (long) nlist,
"Invalid key=%ld at ik=%ld nlist=%ld\n",
key, ik, nlist);
size_t list_size = invlists->list_size(key);
// don't waste time on empty lists
if (list_size == 0) {
continue;
}
scanner->set_list (key, coarse_dis[i * nprobe + ik]);
nlistv++;
InvertedLists::ScopedCodes scodes (invlists, key);
const Index::idx_t * ids = store_pairs ? nullptr :
invlists->get_ids (key);
nheap += scanner->scan_codes (list_size, scodes.get(),
ids, simi, idxi, k);
if (ids) {
invlists->release_ids (ids);
}
nscan += list_size;
if (max_codes && nscan >= max_codes)
break;
}
ndis += nscan;
if (metric_type == METRIC_INNER_PRODUCT) {
heap_reorder<HeapForIP> (k, simi, idxi);
} else {
heap_reorder<HeapForL2> (k, simi, idxi);
}
} // parallel for
} // parallel
indexIVF_stats.nq += n;
indexIVF_stats.nlist += nlistv;
indexIVF_stats.ndis += ndis;
indexIVF_stats.nheap_updates += nheap;
}
void IndexIVF::reconstruct (idx_t key, float* recons) const
{
FAISS_THROW_IF_NOT_MSG (direct_map.size() == ntotal,
"direct map is not initialized");
long list_no = direct_map[key] >> 32;
long offset = direct_map[key] & 0xffffffff;
reconstruct_from_offset (list_no, offset, recons);
}
void IndexIVF::reconstruct_n (idx_t i0, idx_t ni, float* recons) const
{
FAISS_THROW_IF_NOT (ni == 0 || (i0 >= 0 && i0 + ni <= ntotal));
for (long list_no = 0; list_no < nlist; list_no++) {
size_t list_size = invlists->list_size (list_no);
ScopedIds idlist (invlists, list_no);
for (long offset = 0; offset < list_size; offset++) {
long id = idlist[offset];
if (!(id >= i0 && id < i0 + ni)) {
continue;
}
float* reconstructed = recons + (id - i0) * d;
reconstruct_from_offset (list_no, offset, reconstructed);
}
}
}
void IndexIVF::search_and_reconstruct (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels,
float *recons) const
{
long * idx = new long [n * nprobe];
ScopeDeleter<long> del (idx);
float * coarse_dis = new float [n * nprobe];
ScopeDeleter<float> del2 (coarse_dis);
quantizer->search (n, x, nprobe, coarse_dis, idx);
invlists->prefetch_lists (idx, n * nprobe);
// search_preassigned() with `store_pairs` enabled to obtain the list_no
// and offset into `codes` for reconstruction
search_preassigned (n, x, k, idx, coarse_dis,
distances, labels, true /* store_pairs */);
for (idx_t i = 0; i < n; ++i) {
for (idx_t j = 0; j < k; ++j) {
idx_t ij = i * k + j;
idx_t key = labels[ij];
float* reconstructed = recons + ij * d;
if (key < 0) {
// Fill with NaNs
memset(reconstructed, -1, sizeof(*reconstructed) * d);
} else {
int list_no = key >> 32;
int offset = key & 0xffffffff;
// Update label to the actual id
labels[ij] = invlists->get_single_id (list_no, offset);
reconstruct_from_offset (list_no, offset, reconstructed);
}
}
}
}
void IndexIVF::reconstruct_from_offset(
long /*list_no*/,
long /*offset*/,
float* /*recons*/) const {
FAISS_THROW_MSG ("reconstruct_from_offset not implemented");
}
void IndexIVF::reset ()
{
direct_map.clear ();
invlists->reset ();
ntotal = 0;
}
long IndexIVF::remove_ids (const IDSelector & sel)
{
FAISS_THROW_IF_NOT_MSG (!maintain_direct_map,
"direct map remove not implemented");
std::vector<long> toremove(nlist);
#pragma omp parallel for
for (long i = 0; i < nlist; i++) {
long l0 = invlists->list_size (i), l = l0, j = 0;
ScopedIds idsi (invlists, i);
while (j < l) {
if (sel.is_member (idsi[j])) {
l--;
invlists->update_entry (
i, j,
invlists->get_single_id (i, l),
ScopedCodes (invlists, i, l).get());
} else {
j++;
}
}
toremove[i] = l0 - l;
}
// this will not run well in parallel on ondisk because of possible shrinks
long nremove = 0;
for (long i = 0; i < nlist; i++) {
if (toremove[i] > 0) {
nremove += toremove[i];
invlists->resize(
i, invlists->list_size(i) - toremove[i]);
}
}
ntotal -= nremove;
return nremove;
}
void IndexIVF::train (idx_t n, const float *x)
{
if (verbose)
printf ("Training level-1 quantizer\n");
train_q1 (n, x, verbose, metric_type);
if (verbose)
printf ("Training IVF residual\n");
train_residual (n, x);
is_trained = true;
}
void IndexIVF::train_residual(idx_t /*n*/, const float* /*x*/) {
if (verbose)
printf("IndexIVF: no residual training\n");
// does nothing by default
}
double IndexIVF::imbalance_factor () const
{
std::vector<int> hist (nlist);
for (int i = 0; i < nlist; i++) {
hist[i] = invlists->list_size(i);
}
return faiss::imbalance_factor (nlist, hist.data());
}
void IndexIVF::print_stats () const
{
std::vector<int> sizes(40);
for (int i = 0; i < nlist; i++) {
for (int j = 0; j < sizes.size(); j++) {
if ((invlists->list_size(i) >> j) == 0) {
sizes[j]++;
break;
}
}
}
for (int i = 0; i < sizes.size(); i++) {
if (sizes[i]) {
printf ("list size in < %d: %d instances\n",
1 << i, sizes[i]);
}
}
}
void IndexIVF::check_compatible_for_merge (const IndexIVF &other) const
{
// minimal sanity checks
FAISS_THROW_IF_NOT (other.d == d);
FAISS_THROW_IF_NOT (other.nlist == nlist);
FAISS_THROW_IF_NOT (other.code_size == code_size);
FAISS_THROW_IF_NOT_MSG (typeid (*this) == typeid (other),
"can only merge indexes of the same type");
}
void IndexIVF::merge_from (IndexIVF &other, idx_t add_id)
{
check_compatible_for_merge (other);
FAISS_THROW_IF_NOT_MSG ((!maintain_direct_map &&
!other.maintain_direct_map),
"direct map copy not implemented");
invlists->merge_from (other.invlists, add_id);
ntotal += other.ntotal;
other.ntotal = 0;
}
void IndexIVF::replace_invlists (InvertedLists *il, bool own)
{
//FAISS_THROW_IF_NOT (ntotal == 0);
FAISS_THROW_IF_NOT (il->nlist == nlist &&
il->code_size == code_size);
if (own_invlists) {
delete invlists;
}
invlists = il;
own_invlists = own;
}
void IndexIVF::copy_subset_to (IndexIVF & other, int subset_type,
long a1, long a2) const
{
FAISS_THROW_IF_NOT (nlist == other.nlist);
FAISS_THROW_IF_NOT (code_size == other.code_size);
FAISS_THROW_IF_NOT (!other.maintain_direct_map);
FAISS_THROW_IF_NOT_FMT (
subset_type == 0 || subset_type == 1 || subset_type == 2,
"subset type %d not implemented", subset_type);
size_t accu_n = 0;
size_t accu_a1 = 0;
size_t accu_a2 = 0;
InvertedLists *oivf = other.invlists;
for (long list_no = 0; list_no < nlist; list_no++) {
size_t n = invlists->list_size (list_no);
ScopedIds ids_in (invlists, list_no);
if (subset_type == 0) {
for (long i = 0; i < n; i++) {
idx_t id = ids_in[i];
if (a1 <= id && id < a2) {
oivf->add_entry (list_no,
invlists->get_single_id (list_no, i),
ScopedCodes (invlists, list_no, i).get());
other.ntotal++;
}
}
} else if (subset_type == 1) {
for (long i = 0; i < n; i++) {
idx_t id = ids_in[i];
if (id % a1 == a2) {
oivf->add_entry (list_no,
invlists->get_single_id (list_no, i),
ScopedCodes (invlists, list_no, i).get());
other.ntotal++;
}
}
} else if (subset_type == 2) {
// see what is allocated to a1 and to a2
size_t next_accu_n = accu_n + n;
size_t next_accu_a1 = next_accu_n * a1 / ntotal;
size_t i1 = next_accu_a1 - accu_a1;
size_t next_accu_a2 = next_accu_n * a2 / ntotal;
size_t i2 = next_accu_a2 - accu_a2;
for (long i = i1; i < i2; i++) {
oivf->add_entry (list_no,
invlists->get_single_id (list_no, i),
ScopedCodes (invlists, list_no, i).get());
}
other.ntotal += i2 - i1;
accu_a1 = next_accu_a1;
accu_a2 = next_accu_a2;
}
accu_n += n;
}
FAISS_ASSERT(accu_n == ntotal);
}
IndexIVF::~IndexIVF()
{
if (own_invlists) {
delete invlists;
}
}
void IndexIVFStats::reset()
{
memset ((void*)this, 0, sizeof (*this));
}
IndexIVFStats indexIVF_stats;
} // namespace faiss