forked from lmostrowski/SAGEPreP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ProcessingPipeline.m
1286 lines (1175 loc) · 53.9 KB
/
ProcessingPipeline.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function ProcessingPipeline
% EEG processing pipeline (Lauren Ostrowski, 06-21-2019
% email [email protected] with any concerns)
%
% Load EEG file(s) from a variety of collection systems and file types
% as well as native EEGLab .set data structure
% Bandpass data at the range you specify below (default: 0.1 - 70 Hz)
% Notch filter data (default: 60 Hz)
% Re-reference the data to the average reference (optional)
% Interpolate bad channels identified by the FASTER algorithm, with manual
% verification (bad channels in red, external channels in black)
% Run ICA and reject bad components identified by the FASTER algorithm,
% with manual verification (bad components in red)
% Segment data into task-specific runs (eyes closed, eyes open, etc.)
% Epoch data and reject very bad epochs (~70% sensitivity)
% Interpolate bad channels within epochs (identified as above)
%
% Also save topological plots of the independent components (in the
% 'Intermediate' directory) for your records.
% NOTE: the REJECTED components will have a RED BACKGROUND
%
%% VARIABLES
% Channel options
o.channel_options.eeg_chans=1:128; % Enter the channel indices of all EEG channels
o.channel_options.eog_chans=[8 25 126 127]; % If EOG collected, enter the EOG channel indices (expected that they are within the EEG channel set [not external])
o.channel_options.ext_chans=[]; % If external channel data collected (ex. EKG), enter channel index(ices)
o.channel_options.initialRef=17; % Enter the channel(s) to which input data will be initially referenced (suggest the nasion)
o.channel_options.do_avg_reref=0; % Set equal to 1 to re-reference to average
o.channel_options.mastoidRef=0; % Set equal to 1 to use mastoid reference
o.channel_options.mastoidChannels = [56,107];
% Epoch options
o.epoch_options.epoch_on=1; % Set equal to 1 to perform epoching
o.epoch_options.epoch_length=1; % Set length of epoch (in seconds)
% Filtering options - set equal to 1 to perform filtering
o.filter_options.hpf_on=1;
o.filter_options.hpf_freq=0.1; % Highpass frequency
o.filter_options.lpf_on=1;
o.filter_options.lpf_freq=70; % Lowpass frequency
o.filter_options.notch_on=1;
o.filter_options.notch_freq=60; % Notch frequency
% Data segmentation options - set equal to 1 to segment by event flags
o.epoch_options.segmentByEvent=1;
% Name event flags of interest to be saved in outputs
o.epoch_options.eventNames={'EyesClosed','EyesOpen',...
'RHEyesOpen','LHEyesOpen','RHEyesClosed','LHEyesClosed'};
% Event flags of interest as stored in EEG data structure
o.epoch_options.eventFlags={{'EyCl','eyec','eycl'},{'EyOp','eyeo','eyop'},...
{'RHEO','rheo'},{'LHEO','lheo'},{'RHEC','rhec'},{'LHEC','lhec'}};
%% Set up necessary files to track processing/catch errors
fprintf('**************************************\n');
fprintf('* Running EEG Preprocessing Pipeline *\n');
fprintf('**************************************\n');
fprintf('Make sure you have correctly set all customizable variables:\n');
fprintf([' - EEG channels:' sprintf(' %d', o.channel_options.eeg_chans) '\n']);
if ~isempty(o.channel_options.eog_chans)
fprintf([' - EOG channels:' sprintf(' %d', o.channel_options.eog_chans) '\n']);
else
fprintf(' - EOG channel data not collected.\n');
end
if ~isempty(o.channel_options.ext_chans)
fprintf([' - External channel(s):' sprintf(' %d', o.channel_options.ext_chans) '\n']);
else
fprintf(' - External channel data not collected.\n');
end
fprintf([' - Reference electrode:' sprintf(' %d', o.channel_options.initialRef) '\n'])
if o.channel_options.do_avg_reref
fprintf(' - Average re-reference will be performed\n');
end
if o.filter_options.hpf_on
fprintf([' - Data will be highpass filtered at ' num2str(o.filter_options.hpf_freq) ' Hz\n']);
end
if o.filter_options.lpf_on
fprintf([' - Data will be lowpass filtered at ' num2str(o.filter_options.lpf_freq) ' Hz\n']);
end
if o.filter_options.notch_on
fprintf([' - Data will be notch filtered at ' num2str(o.filter_options.notch_freq) ' Hz\n']);
end
if o.epoch_options.epoch_on
fprintf([' - Data will be split into epochs of ' num2str(o.epoch_options.epoch_length) ' second(s)\n']);
end
if o.epoch_options.segmentByEvent
fprintf([' - Data will be segmented by event flags: ' strjoin(o.epoch_options.eventNames,', ')]);
end; fprintf(newline);
fprintf('Select start directory...\n'); startDir=uigetdir(pwd);
if startDir==0
fprintf(' Program terminated: You must select start directory.\n');
fprintf('Please run program again and select a start directory if you wish to proceed.\n');
return;
end
fprintf('Start directory selected.\n\n');
fprintf('Select output directory...\n'); outDir=uigetdir(pwd);
if outDir==0
fprintf(' Program terminated: You must select output directory.\n');
fprintf('Please run program again and select an output directory if you wish to proceed.\n');
return;
end
fprintf('Output directory selected.\n');
eeglab;close;initDir=pwd; % set up path hierarchies by calling eeglab
Qname='ProcQ.eegQ';
% Search start directory for EEG files
[pSETlist, nSETlist] = extsearchc(startDir,'.set',0); % Native eeglab data structure
[pRAWlist, nRAWlist] = extsearchc(startDir,'.raw',0); % EGI (Electrical Geodesics Incorporated) continuous file
[pEDFlist, nEDFlist] = extsearchc(startDir,'.edf',0); % joint European 16-bit data format
[pBDFlist, nBDFlist] = extsearchc(startDir,'.bdf',0); % 24-bit variant of the EDF format used by EEG systems manufactured by BioSemi
[pSMAlist, nSMAlist] = extsearchc(startDir,'.sma',0); % Snapmaster file
[pCNTlist, nCNTlist] = extsearchc(startDir,'.cnt',0); % Neuroscan continuous file
% Note that there are frequently issues importing Neuroscan data, and it
% may be necessary to input manually by calling "eeglab", loading the data
% and saving as a .SET file before running the preprocessing pipeline
plist=[pSETlist pRAWlist pEDFlist pBDFlist pSMAlist pCNTlist];
nlist=[nSETlist nRAWlist nEDFlist nBDFlist nSMAlist nCNTlist];
oplist=cell(size(plist));
x=true(size(plist));
c=clock;
% Set up output hierarchy
filepath=outDir;
if (length(plist) == 1) && isempty(outDir)
oplist{1}=outDir;
else
for i=1:length(plist)
oplist{i}=[filepath filesep nlist{i}(1:end-4) '_cleaned_' ...
num2str(c(2)) '-' num2str(c(3)) '-' num2str(c(1))];
if exist(oplist{i},'dir')
promptMessage = sprintf('The output directory already exists:\n%s\nDo you want to overwrite it?', ...
[nlist{i}(1:end-4) '_cleaned_' num2str(c(2)) '-' num2str(c(3)) '-' num2str(c(1))]);
titleBarCaption = 'Overwrite?';
buttonText = questdlg(promptMessage, titleBarCaption, 'Yes', 'No', 'Yes');
if strcmpi(buttonText, 'No')
options.Resize='on';options.WindowStyle='normal';options.Interpreter='tex';
newName = inputdlg('Enter new name:',...
'New output folder name',[1 50],{''},options);
if isempty(newName)
newName=['untitled_' num2str(c(2)) '-' num2str(c(3)) '-' num2str(c(1))];
else
newName=newName{1};
if ~strcmp(newName(max(length(newName)-9,1):end),...
[num2str(c(2)) '-' num2str(c(3)) '-' num2str(c(1))])
newName=[newName '_' num2str(c(2)) '-' num2str(c(3)) '-' num2str(c(1))];
end
end
oplist{i}=[filepath filesep newName]; mkdir(oplist{i});
end
else
mkdir(oplist{i});
end
end
end
plist={plist{x}};
nlist={nlist{x}};
oplist={oplist{x}};
o.file_options.plist=plist;
o.file_options.nlist=nlist;
o.file_options.oplist=oplist;
% Add vars to the 'ProcQ.eegQ' file
Q.plist=plist;
Q.nlist=nlist;
Q.plist_rel=cell(0);
Q.oplist_rel=cell(0);
for v=1:length(plist)
Q.plist_rel{v}=find_relative_path(plist{v},startDir);
try
Q.oplist_rel{v}=find_relative_path(oplist{v},startDir);
catch ME
if (strcmp(ME.identifier,'MATLAB:cd:NonExistentDirectory'))
if startsWith(outDir,filesep); mkdir(outDir)
else; mkdir([initDir filesep outDir]); end
Q.oplist_rel{v}=find_relative_path(oplist{v},startDir);
else; rethrow(ME)
end
end
end
Q.outDir_rel=cell(0);
if ~isempty(outDir)
Q.outDir_rel=find_relative_path(outDir,startDir);
end
if (~exist([startDir filesep 'Processing'],'dir'))
mkdir([startDir filesep 'Processing']);
end
my_comp_num=1;
Q.comp_nums=1;
Q.finished=0;
Q.processed=zeros(size(Q.plist));
Q.errors=zeros(size(Q.plist));
Q.next_file=1;
save([startDir filesep Qname],'Q');
% Set up error checks and queue files for processing
all_errors=cell(0);
error_indices=zeros(size(plist));
first_file=1;
had_error=0;
my_proc_file=[];
make_processing_file();
EEG_state=[];
while 1
L=load([startDir filesep Qname],'-mat');
Q=L.Q;
if ~first_file
if ~had_error
Q.processed(current_file)=1;
else
Q.errors(current_file)=1;
if exist('m','var')
if isempty(outDir)
if exist([startDir 'Preprocessing_errors.mat'],'file')
L=load([startDir 'Preprocessing_errors.mat'],'-mat');
all_errors=L.all_errors;
end
all_errors{end+1,1}=m;
all_errors{end,2}=EEG_state;
save([startDir filesep 'Preprocessing_errors.mat'],'all_errors','-mat');
error_indices(current_file)=size(all_errors,1);
else
if exist([outDir filesep 'Preprocessing_errors.mat'],'file')
L=load([outDir filesep 'Preprocessing_errors.mat'],'-mat');
all_errors=L.all_errors;
end
all_errors{end+1,1}=m;
all_errors{end,2}=EEG_state;
save([outDir filesep 'Preprocessing_errors.mat'],'all_errors','-mat');
error_indices(current_file)=size(all_errors,1);
end
end
end
end
had_error=0;
if Q.next_file>length(Q.plist)
Q.finished=1;
end
if Q.finished
Q.comp_nums=setdiff(Q.comp_nums,my_comp_num);
delete_processing_file();
break;
end
% Iterate through list of files for processing
current_file=Q.next_file;
Q.next_file=Q.next_file+1;
save([startDir filesep Qname],'Q');
o.file_options.current_file = [plist{current_file} filesep nlist{current_file}];
o.file_options.current_file_num=current_file;
searchstring2=nlist{current_file};
if ~isempty(strfind(nlist{current_file},searchstring2))
t0=tic;
fprintf('******************\n');
fprintf('* File %.3d / %.3d *\n',current_file,length(nlist));
fprintf('******************\n');
log_file = fopen([oplist{current_file} filesep nlist{current_file}(1:end-4) '.log'],'a+');
try
o.file_options.output_folder_name=outDir;
% RUN PREPROCESSING
preprocess(o,log_file,t0);
catch ME
fprintf('\nError in function %s() at line %d:\nERROR: %s.\n', ...
ME.stack(1).name, ME.stack(1).line, ME.message);
try fclose(log_file); catch; end
had_error=1;
end
else
fprintf('Skipped file.\n');
end
% After processing
first_file=0;
end
%%%%%%%%%%%%%%%%%%%
% Post processing %
%%%%%%%%%%%%%%%%%%%
D=dir([startDir filesep 'Processing']);
if length(D)>2
fprintf('***************************\n');
fprintf('* Pre-processing complete *\n');
fprintf('***************************\n');
fprintf('Finished processing all files.\n');
return;
end
if isempty(outDir)
top_log = fopen([startDir filesep 'Preprocessing.log'],'a');
if exist([startDir filesep 'Preprocessing_errors.mat'],'file')
L=load([startDir filesep 'Preprocessing_errors.mat'],'-mat');
all_errors=L.all_errors;
end
else
top_log = fopen([outDir filesep 'Preprocessing.log'],'a');
if exist([outDir filesep 'Preprocessing_errors.mat'],'file')
L=load([outDir filesep 'Preprocessing_errors.mat'],'-mat');
all_errors=L.all_errors;
end
end
c=clock;
months={'Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun' 'Jul' 'Aug' 'Sep' 'Oct' 'Nov' 'Dec'};
fprintf(top_log,'\n%d/%s/%d %d:%d:%d\n',c(3),months{c(2)},c(1),c(4),c(5),round(c(6)));
for v=1:length(plist)
fprintf(top_log,'%s%s%s:\n',plist{v},filesep,nlist{v});
end
delete([startDir filesep Qname]);
if length(dir([startDir filesep 'Processing']))==2
rmdir([startDir filesep 'Processing']);
end
fprintf('**************************\n');
fprintf('* Preprocessing Finished *\n');
fprintf('* %.3d processed *\n',sum(Q.processed));
fprintf('* %.3d errors *\n',sum(Q.errors));
fprintf('* %.3d skipped *\n',length(plist)-sum(Q.processed)-sum(Q.errors));
fprintf('**************************\n');
fprintf(top_log,'\nFinished. %d processed, %d errors, %d skipped.\n',sum(Q.processed),sum(Q.errors),length(plist)-sum(Q.processed)-sum(Q.errors));
fclose(top_log);
%% File organization
function make_processing_file()
my_proc_file=fullfile(startDir,'Processing',sprintf('%d',my_comp_num));
fid=fopen(my_proc_file,'w');
fclose(fid);
assignin('caller','my_proc_file',my_proc_file);
end
function delete_processing_file()
delete(my_proc_file);
assignin('caller','my_proc_file',[]);
end
end
%% Main preprocessing pipeline
function EEG=preprocess(o,log_file,tstart)
% Elements adapted from FASTER and MARA pipelines
try
%%%%%%%%%%%%%%%%
% File options %
%%%%%%%%%%%%%%%%
% 1 File name including full path (string)
% 2 Reference channel (integer > 0)
% 3 Number of data channels (integer > 0)
% 4 Number of extra channels (integer > 0)
% 5 Channel locations file including full path (string)
% 6 Save options (cell)
%%%%%%%%%%%%%%%%
fullfilename = o.file_options.current_file;
eeg_chans = o.channel_options.eeg_chans;
ext_chans = o.channel_options.ext_chans;
do_reref = o.channel_options.do_avg_reref;
if do_reref; ref_chan = []; else; ref_chan=o.channel_options.initialRef; end
[filepath,filename,extension] = fileparts(fullfilename);
if o.epoch_options.segmentByEvent
if length(o.epoch_options.eventNames) ~= length(o.epoch_options.eventFlags)
EEG=[];
fprintf('ERROR: The number of event names does not match the number of event flags.\n');
fprintf(log_file,'%.2f - The number of event names does not match the number of event flags. Cannot process.\n',toc(tstart));
return
end
end
c=clock;
months={'Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun' 'Jul' 'Aug' 'Sep' 'Oct' 'Nov' 'Dec'};
fprintf(log_file,'\n%d/%s/%d %d:%d:%d\n',c(3),months{c(2)},c(1),c(4),c(5),round(c(6)));
fprintf(log_file,'%.2f - Opened log file.\n',toc(tstart));
%%%%%%%%%%%%%%
% File setup %
%%%%%%%%%%%%%%
fprintf('Loading %s.\n',fullfilename);
if strcmpi(extension,'.set')
EEG = pop_loadset('filename',[filename '.set'],'filepath',filepath);
elseif strcmpi(extension,'.raw')
EEG = pop_readegi(fullfilename);
elseif strcmpi(extension,'.edf') || strcmpi(extension,'.bdf')
isActive = plugin_askandinstall('Biosig', 'sopen');
if ~isActive; EEG = []; fprintf('Biosig plugin missing. Cannot process.\n');
fprintf(log_file,'%.2f - Biosig plugin missing; cannot process without it. Use EEGLAB Extension Manager to install.\n',toc(tstart));
return
else
EEG = pop_biosig(fullfilename,'ref',1);
end
elseif strcmpi(extension,'.sma')
options.Resize='on';
options.WindowStyle='normal';
options.Interpreter='tex';
gain = inputdlg('Enter relative gain (1/2^{12}*[V_{max}-V_{min}]*10^6/gain):',...
'Enter the relative gain',[1 75],{'0'},options);
[EEG,~] = pop_snapread(filename, gain);
elseif strcmpi(extension,'.cnt')
EEG = pop_loadcnt(fullfilename,'dataformat','auto');
else % File extension not recognized
EEG=[];
fprintf('ERROR: Unknown file format.\n');
fprintf(log_file,'%.2f - Unknown file format. Cannot process.\n',toc(tstart));
return
end
fprintf(log_file,'%.2f - Loaded file %s.\n',toc(tstart),fullfilename);
if ~isempty(o.file_options.output_folder_name)
filepath=o.file_options.oplist{o.file_options.current_file_num};
if ~exist([filepath filesep 'Intermediate'],'dir')
mkdir([filepath filesep 'Intermediate']);
end
else
filepath=o.file_options.oplist{o.file_options.current_file_num};
if ~exist([filepath filesep 'Intermediate'],'dir')
mkdir([filepath filesep 'Intermediate']);
end
delete(fullfilename);
if exist([fullfilename(1:end-4) '.fdt'],'file')
delete([fullfilename(1:end-4) '.fdt']);
end
if exist([fullfilename(1:end-4) '.dat'],'file')
delete([fullfilename(1:end-4) '.dat']);
end
end
EEG.filename = [filename '.set'];
EEG = eeg_checkset(EEG);
if EEG.nbchan ~= length(eeg_chans) + length(ext_chans)
eeg_chans=1:EEG.nbchan;
options.Resize='on';
options.WindowStyle='normal';
options.Interpreter='tex';
userExtChans = inputdlg([num2str(EEG.nbchan) ' channels were found. '...
'If any EEG channels are external (EKG, nasion, etc.), enter their indices here:'],...
'Indicate any external channels',[1 50],{''},options);
if ~isempty(userExtChans); ext_chans=str2num(userExtChans{1}); end
end
% Check if channel locations exist, and if not load them from disk.
if (~isfield(EEG.chanlocs,'X') || ~isfield(EEG.chanlocs,'Y') || ~isfield(EEG.chanlocs,'Z') || isempty(EEG.chanlocs)) || isempty([EEG.chanlocs(:).X]) || isempty([EEG.chanlocs(:).Y]) || isempty([EEG.chanlocs(:).Z])
fprintf('Warning: Channel locations file not found\n');
promptMessage = sprintf('Are you inputting data from the EGI GSN 128-channel EEG cap?');
buttonText = questdlg(promptMessage, '', 'Yes', 'No', 'Yes');
if strcmpi(buttonText, 'Yes')
tempChanLocs=load('GSN128_chan_locs.mat');
EEG.chanlocs=tempChanLocs.chanlocs; EEG.chaninfo=tempChanLocs.chaninfo; EEG.urchanlocs=tempChanLocs.urchanlocs;
fprintf(log_file,'%.2f - GSN128 channel locations loaded.\n',toc(tstart));
else % Not inputting data from the EGI GSN 128-channel EEG cap
fprintf('Please select channel locations file\n');
[channame, chanpath] = uigetfile2('*.sfp*;*.sph*;*.loc*;*.locs;*.ced;*.xyz*;*.asc*;*.polhemus*;*.besa*;*.chanedit;*.custom',...
'Select channel locations file', 'multiselect', 'off');
drawnow;
if channame==0 || chanpath==0
fprintf('ERROR: Channel locations file required.\n');
fprintf(log_file,'%.2f - Channel locations file required. Cannot process.\n',toc(tstart));
return
else
EEG.chanlocs = readlocs([chanpath channame]);
fprintf(log_file,'%.2f - Loaded channel locations file from %s.\n',toc(tstart),[chanpath channame]);
end
end
EEG = eeg_checkset(EEG);
EEG.saved='no';
end
%%%%%%%%%%%%%%%%
% Save options %
%%%%%%%%%%%%%%%%
EEG = pop_saveset(EEG,'filename',[filename '_original.set'],'filepath',filepath,'savemode','onefile');
save_before_filter = 1;
save_before_interp = 1;
save_before_ica_rej = 1;
save_before_segment = 1;
if save_before_filter
EEGBAK=EEG;
EEGBAK.setname = ['pre_filt_' EEG.setname];
pop_saveset(EEGBAK,'filename',['1_pre_filt_' filename],'filepath',[filepath filesep 'Intermediate'],'savemode','onefile');
clear EEGBAK;
end
%%%%%%%%%%%%%
% Filtering %
%%%%%%%%%%%%%
do_hipass=o.filter_options.hpf_on;
do_lopass=o.filter_options.lpf_on;
do_notch=o.filter_options.notch_on;
if any(any(isnan(EEG.data)))
fprintf('NaN in EEG data before filtering.\n');
end
% Initial reference before channel processing
EEG = h_pop_reref(EEG,o.channel_options.initialRef,'keepref','on');
EEG.ref = ['Channel ' num2str(EEG.chanlocs(o.channel_options.initialRef).labels)];
if do_hipass
w_h=o.filter_options.hpf_freq;
t_h=0.5; if t_h>w_h; t_h=w_h; end
r_h=0.05;
a_h=80;
[m, wtpass, wtstop] = pop_firpmord([w_h-(t_h) w_h+(t_h)], [0 1], [10^(-1*abs(a_h)/20) (10^(r_h/20)-1)/(10^(r_h/20)+1)], EEG.srate);
if mod(m,2);m=m+1;end
EEG = pop_firpm(EEG, 'fcutoff', w_h, 'ftrans', t_h, 'ftype', 'highpass', 'wtpass', wtpass, 'wtstop', wtstop, 'forder', m);
EEG.saved='no';
fprintf(log_file,'%.2f - Highpass filter: %.3fHz, transition band: %.2f, order: %d.\n',toc(tstart),w_h,t_h,m);
end
if do_lopass
w_l=o.filter_options.lpf_freq;
t_l=2.5;
r_l=0.01;
a_l=40;
[m, wtpass, wtstop] = pop_firpmord([w_l-(t_l) w_l+(t_l)], [1 0], [(10^(r_l/20)-1)/(10^(r_l/20)+1) 10^(-1*abs(a_l)/20)], EEG.srate);
if mod(m,2);m=m+1;end
EEG = pop_firpm(EEG, 'fcutoff', w_l, 'ftrans', t_l, 'ftype', 'lowpass', 'wtpass', wtpass, 'wtstop', wtstop, 'forder', m);
EEG.saved='no';
fprintf(log_file,'%.2f - Lowpass filter: %.3fHz, transition band: %.2f, order: %d.\n',toc(tstart),w_l,t_l,m);
end
if do_notch
for n=1:length(o.filter_options.notch_freq)
w_n=[o.filter_options.notch_freq(n)-1.5 o.filter_options.notch_freq(n)+1.5];
t_n=1;
r_n=0.05;
a_n=80;
[m, wtpass, wtstop] = pop_firpmord([w_n(1)-(t_n) w_n(1)+(t_n) w_n(2)-(t_n) w_n(2)+(t_n)], [0 1 0], [10^(-1*abs(a_n)/20) (10^(r_n/20)-1)/(10^(r_n/20)+1) 10^(-1*abs(a_n)/20)], EEG.srate);
if mod(m,2);m=m+1;end
EEG = pop_firpm(EEG, 'fcutoff', w_n, 'ftrans', t_n, 'ftype', 'bandstop', 'wtpass', wtpass, 'wtstop', wtstop, 'forder', m);
EEG.saved='no';
fprintf(log_file,'%.2f - Notch filter: %.3f to %.3fHz, transition band: %.2f, order: %d.\n',toc(tstart),w_n(1),w_n(2),t_n,m);
end
end
if save_before_interp
EEGBAK=EEG;
EEGBAK.setname = ['pre_interp_' EEG.setname];
pop_saveset(EEGBAK,'filename',['2_pre_interp_' filename],'filepath',[filepath filesep 'Intermediate'],'savemode','onefile');
clear EEGBAK;
end
%%%%%%%%%%%%%%%%%%%%%%%%%
% Channel interpolation %
%%%%%%%%%%%%%%%%%%%%%%%%%
chans_to_interp=[];
o.channel_options.rejection_options.measure=[1 1 1];
o.channel_options.rejection_options.z=[3 3 3];
if any(eeg_chans(:)==o.channel_options.initialRef)
list_properties = channel_properties(EEG,eeg_chans,o.channel_options.initialRef); channel_callback=list_properties;
elseif any(ext_chans(:)==o.channel_options.initialRef)
list_properties = channel_properties(EEG,eeg_chans,[]); channel_callback=list_properties;
else
error('ERROR: Reference channel not found in neither the EEG nor external channel sets');
end
lengths = min_z(list_properties,o.channel_options.rejection_options);
chans_to_interp = eeg_chans(logical(lengths));
chans_to_interp = setdiff(chans_to_interp,ref_chan);
EOG_chans=o.channel_options.eog_chans;
chans_to_interp = setdiff(chans_to_interp,EOG_chans); % EOG channels necessary for IC algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Manually verify and search for bad channels %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
color_range=cell(length(eeg_chans)+length(ext_chans),1); color_range(:)={'b'};
color_range(chans_to_interp)={'r'};
color_range(ext_chans)={'k'};
eegplot(EEG.data,'srate',EEG.srate,'eloc_file',EEG.chanlocs,...
'dispchans',30,'spacing',50,'color',color_range,...
'title','Manual inspection of EEG data for bad channels');
options.Resize='on';
options.WindowStyle='normal';
options.Interpreter='tex';
answer = inputdlg('Bad channels:',...
'Visual data inspection',[1 50],{num2str(chans_to_interp)},options);
if isempty(answer); chans_to_interp = []; else; chans_to_interp = str2num(answer{1}); end
while any(chans_to_interp > (length(eeg_chans)+length(ext_chans))) || any(chans_to_interp <= 0)
answer = inputdlg(sprintf(['Bad channels:\nChannels must be greater than 0 and less than ' num2str(length(eeg_chans)+length(ext_chans))]),...
'Visual data inspection',[1 50],{num2str(chans_to_interp)},options);
chans_to_interp = str2num(answer{1});
end
close(gcf);
fprintf('Resuming processing...\n');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Pre-epoch data for ICA processing %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
EEGpreEpoch=EEG;
if length(size(EEG.data)) < 3
oldname = EEG.setname;
EEG = make_epochs(EEG,1);
EEG.setname = oldname;
EEG.saved='no';
end
%%%%%%%%%%%%%%%%%%%
% Epoch rejection %
%%%%%%%%%%%%%%%%%%%
EEGtemp = h_pop_reref(EEG, [], 'exclude', ext_chans, 'refstate', ref_chan);
o.epoch_options.rejection_options.measure=[1 1 1];
o.epoch_options.rejection_options.z=[3 3 3];
if size(EEGtemp.data,3) > 1
list_properties = epoch_properties(EEGtemp,setdiff(eeg_chans,chans_to_interp));
[lengths] = min_z(list_properties,o.epoch_options.rejection_options);
EEG=pop_rejepoch(EEG, find(lengths),0);
fprintf(log_file,['%.2f - Rejected %d epoch(s) at positions(s) ' ...
regexprep(num2str(find(lengths)'),'\s+',', ') '.\n'],toc(tstart),length(find(lengths)));
EEG.saved='no';
end
%%%%%%%%%%%%%%%%%%%%%%
% Selected reference %
%%%%%%%%%%%%%%%%%%%%%%
if do_reref
EEG = h_pop_reref(EEG, [], 'exclude',[ext_chans chans_to_interp], 'refstate', ref_chan);
end
if o.channel_options.mastoidRef
mastoidchans = o.channel_options.mastoidChannels;
mastoidRef = mean(EEG.data(mastoidchans,:),1);
EEG.data = EEG.data - mastoidRef;
EEG.data = EEG.data(setdiff(1:EEG.nbchan,mastoidchans),:);
EEG.chanlocs = EEG.chanlocs(setdiff(1:EEG.nbchan,mastoidchans));
EEG.nbchan = EEG.nbchan - 2;
EEG.ref = 'Mastoid';
EEG = eeg_checkset(EEG);
end
%%%%%%%%%%%%%%%
% ICA options %
%%%%%%%%%%%%%%%
do_ica = 1;
k_value = 25;
do_component_rejection = 1;
ica_chans = eeg_chans;
o.ica_options.rejection_options.measure=[1 1 1 1 1];
o.ica_options.rejection_options.z=[3 3 3 3 3];
o.ica_options.IC_images=1;
%%%%%%%%%%%
% Run ICA %
%%%%%%%%%%%
if do_ica && isempty(EEG.icaweights)
num_pca = min(floor(sqrt(size(EEG.data(:,:),2) / k_value)),(size(EEG.data,1) - length(chans_to_interp) - 1));
num_pca = min(num_pca,length(setdiff(ica_chans,chans_to_interp)));
ica_chans=intersect(setdiff(ica_chans,chans_to_interp),union(eeg_chans,ext_chans));
EEG = pop_runica(EEG,'dataset',1, 'chanind',setdiff(ica_chans,chans_to_interp),'options',{'extended',1,'pca',num_pca});
EEG.saved='no';
fprintf(log_file,'%.2f - Ran ICA.\n',toc(tstart));
end
if save_before_ica_rej
EEGBAK=EEG;
EEGBAK.setname = ['pre_comp_rej_' EEG.setname];
pop_saveset(EEGBAK,'filename',['3_pre_comp_rej_' filename],'filepath',[filepath filesep 'Intermediate'],'savemode','onefile');
clear EEGBAK;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Component rejection %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if do_component_rejection && ~isempty(EEG.icaweights)
EEG = eeg_checkset(EEG);
original_name=EEG.setname;
if do_lopass
list_properties = component_properties(EEG,EOG_chans,[w_l-(t_l/2) w_l+(t_l/2)]);
else
list_properties = component_properties(EEG,EOG_chans);
o.ica_options.rejection_options.measure(2)=0;
end
[lengths] = min_z(list_properties,o.ica_options.rejection_options);
% Plot ICs with suggested rejections for manual inspection
EEG.reject.gcompreject=lengths;
[EEG,bad_comps]=pop_selectcomps_integrated(EEG,1:length(lengths));
% Plot components
if (o.ica_options.IC_images)
if ~exist([filepath filesep 'Component maps'],'dir')
mkdir([filepath filesep 'Component maps']);
end
p=1;
activations=eeg_getica(EEG);
perc_vars = var(activations(:,:),[],2);
perc_vars = 100*perc_vars./sum(perc_vars);
for u=1:size(EEG.icawinv,2)
if ~mod(u-1,16)
if (u~=1)
saveas(h,sprintf('%s%sComponent maps%sComponents_%d.png',filepath,filesep,filesep,p));
p=p+1;
close(h);
end
h=figure;
end
subplot(4,4,1+mod(u-1,16));
topoplot(EEG.icawinv(:,u),EEG.chanlocs(EEG.icachansind));
title(sprintf('Component %d\n%.1f%% variance',u,perc_vars(u)));
if ismember(u,bad_comps)
c=get(h,'Children');
c2=get(c(1),'Children');
set(c2(5),'FaceColor',[0.6 0 0]);
x=get(c2(5),'XData');
x(1:end/2)=1.5*(x(1:end/2));
set(c2(5),'XData',x);
y=get(c2(5),'YData');
y(1:end/2)=1.5*(y(1:end/2));
set(c2(5),'YData',y);
end
end
saveas(h,sprintf('%s%sComponent maps%sComponents_%d.png',filepath,filesep,filesep,p));
if ~isempty(h)
close(h);
end
end
elseif ~isempty(EEG.icawinv) && o.ica_options.IC_images
activations=eeg_getica(EEG);
perc_vars = var(activations(:,:),[],2);
perc_vars = 100*perc_vars./sum(perc_vars);
p=1;
for u=1:size(EEG.icawinv,2)
if ~mod(u-1,16)
if (u~=1)
saveas(h,sprintf('%s%sComponent maps%sComponents_%d.png',filepath,filesep,filesep,p));
p=p+1;
close(h);
end
h=figure;
end
subplot(4,4,1+mod(u-1,16));
topoplot(EEG.icawinv(:,u),EEG.chanlocs);
title(sprintf('Component %d\n%.1f%% variance',u,perc_vars(u)));
end
saveas(h,sprintf('%s%sComponent maps%sComponents_%d.png',filepath,filesep,filesep,p));
if ~isempty(h)
close(h);
end
end
% Revert data to match event tags
EEGtemp=EEG; EEG=EEGpreEpoch;
EEG.icachansind=EEGtemp.icachansind; EEG.icawinv=EEGtemp.icawinv;
EEG.icasphere=EEGtemp.icasphere; EEG.icaweights=EEGtemp.icaweights;
clear EEGtemp;
% Reject bad components
if do_component_rejection && ~isempty(EEG.icaweights)
if ~isempty(bad_comps)
fprintf('Rejecting components');
fprintf(' %d',bad_comps);
fprintf('.\n');
EEG = pop_subcomp(EEG, bad_comps, 0);
fprintf(log_file,['%.2f - Rejected %d component(s): ' ...
regexprep(num2str(bad_comps'),'\s+',', ') '.\n'],toc(tstart),length(bad_comps));
else
fprintf('Rejected no components.\n');
fprintf(log_file,'%.2f - Rejected no components.\n',toc(tstart));
end
EEG.setname=original_name;
EEG.saved='no';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Complete channel interpolation %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(chans_to_interp)
EEG = h_eeg_interp_spl(EEG,chans_to_interp,ext_chans);
EEG.saved='no';
fprintf(log_file,['%.2f - Interpolated channel(s) ' ...
regexprep(num2str(chans_to_interp),'\s+',', ') '.\n'],toc(tstart));
zs=channel_callback-repmat(mean(channel_callback,1),size(channel_callback,1),1);
zs=zs./repmat(std(zs,[],1),size(channel_callback,1),1);
for l=1:length(chans_to_interp)
cha=chans_to_interp(l);
chaCorr=zs(cha,1); chaVar=zs(cha,2); chaHurst=zs(cha,3);
if chaCorr < -3; reasoning='Low mean correlation';
elseif chaCorr > 3; reasoning='High mean correlation'; % should never happen
elseif chaVar < -3; reasoning='Low variance';
elseif chaVar > 3; reasoning='High variance';
elseif chaHurst < -3; reasoning='Low Hurst exponent';
elseif chaHurst > 3; reasoning='High Hurst exponent';
else; reasoning='Manually marked for rejection';
end
fprintf(log_file,[' %d: ',reasoning,'.\n'],chans_to_interp(l));
end
end
%%%%%%%%%%%%%%%%%%%%%%%
% Unsegmented dataset %
%%%%%%%%%%%%%%%%%%%%%%%
tStart=EEG.xmin; tEnd=EEG.xmax;
fprintf(log_file,['%.2f - ' filename '_full_preprocessed.set'],toc(tstart));
fprintf(log_file,'.\n');
EEGBAK=pop_select(EEG,'time',[tStart tEnd]);
EEGBAK = eeg_checkset(EEGBAK);
EEGBAK.setname = ['full_preprocessed_' EEG.setname];
if o.epoch_options.epoch_on
oldname = EEGBAK.setname;
if EEGBAK.xmax > o.epoch_options.epoch_length
EEGBAK = make_epochs(EEGBAK,o.epoch_options.epoch_length);
fprintf(log_file,'%.2f - Epoched data every %.2f seconds.\n',toc(tstart),o.epoch_options.epoch_length);
else
fprintf(log_file,'%.2f - Data not epoched (segment length less than %.2f seconds).\n',toc(tstart),o.epoch_options.epoch_length);
end
EEGBAK.setname = oldname;
end
if size(EEGBAK.data,3) > 1
EEGtemp = EEGBAK;
if do_reref
EEGtemp = h_pop_reref(EEGtemp, [], 'exclude',ext_chans, 'refstate', ref_chan);
end
fprintf(log_file,'Initial baseline variance: %.2f.\n',median(var(mean(EEGtemp.data(:,1:round(EEGtemp.srate-1*EEGtemp.xmin),:),3),[],2)));
clear EEGtemp;
end
%%%%%%%%%%%%%%%%%%%
% Epoch rejection %
%%%%%%%%%%%%%%%%%%%
o.epoch_options.rejection_options.measure=[1 1 1];
o.epoch_options.rejection_options.z=[3 3 3];
EEGtemp = h_pop_reref(EEGBAK, [], 'exclude', ext_chans, 'refstate', ref_chan);
if size(EEGtemp.data,3) > 1
list_properties = epoch_properties(EEGtemp,setdiff(eeg_chans,chans_to_interp));
[lengths] = min_z(list_properties,o.epoch_options.rejection_options);
EEGBAK=pop_rejepoch(EEGBAK, find(lengths),0);
fprintf(log_file,[' %.2f - Rejected %d epoch(s) at positions(s) ' ...
regexprep(num2str(find(lengths)'),'\s+',', ') '.\n'],toc(tstart),length(find(lengths)));
EEGBAK.saved='no';
end
clear EEGtemp
%%%%%%%%%%%%%%%%%%%%%%%
% Epoch interpolation %
%%%%%%%%%%%%%%%%%%%%%%%
do_epoch_interp=1;
o.epoch_interp_options.rejection_options.measure=[1 1 1 1];
o.epoch_interp_options.rejection_options.z=[3 3 3 3];
if do_epoch_interp && length(size(EEGBAK.data)) > 2
status = '';
lengths_ep=cell(1,size(EEGBAK.data,3));
for v=1:size(EEGBAK.data,3)
list_properties = single_epoch_channel_properties(EEGBAK,v,eeg_chans);
lengths_ep{v}=eeg_chans(logical(min_z(list_properties,o.epoch_interp_options.rejection_options)));
status = [status sprintf('%d: ',v) sprintf('%d ',lengths_ep{v}) sprintf('\n')];
end
EEGBAK=h_epoch_interp_spl(EEGBAK,lengths_ep,ext_chans);
EEGBAK.saved='no';
if ~exist([filepath filesep 'Channel interpolations by epoch'],'dir')
mkdir([filepath filesep 'Channel interpolations by epoch']);
end % Directory for epoch interpolation text files
epoch_interps_log_file=fopen([filepath filesep ...
'Channel interpolations by epoch' filesep filename ...
'_full_preprocessed_channel_interpolations_by_epoch.txt'],'a');
fprintf(epoch_interps_log_file,'%s',status);
fclose(epoch_interps_log_file);
fprintf(log_file,' %.2f - Did per-epoch interpolation cleanup.\n',toc(tstart));
fprintf(log_file,[' See ' filename '_full_preprocessed' ...
'_channel_interpolations_by_epoch.txt for details.\n']);
end
EEGBAK.urevent=[];
pop_saveset(EEGBAK,'filename',[filename '_full_preprocessed'],...
'filepath',filepath,'savemode','onefile');
clear EEGBAK;
%%%%%%%%%%%%%%%%%%%%%%%%
% Segment by event tag %
%%%%%%%%%%%%%%%%%%%%%%%%
if o.epoch_options.segmentByEvent
if isempty(EEG.event)
fprintf('WARNING: User specified segmentation by task, but no event flags were found in the data.\n');
fprintf(' All EEG data saved under ''_full_preprocessed.set'' file.\n');
else
% Find all matching event flags in EEG data
eventflags=o.epoch_options.eventFlags;
allflags=horzcat(eventflags{:});
allrecorded = {EEG.event.type};
toDelete=[];
for i=1:length(allrecorded)
if any(strcmp(allrecorded(i),allflags))
else; toDelete = [toDelete i];
end
end
% Delete all unmatched event tags
EEG = pop_editeventvals(EEG,'delete',toDelete);
% Check if any events remain
if isempty(EEG.event)
fprintf('WARNING: User specified segmentation by task, but no event flags were found in the data.\n');
fprintf(' All EEG data saved under ''_full_preprocessed.set'' file.\n');
else % Segment data by event flag
if save_before_segment
EEGBAK=EEG;
EEGBAK.setname = ['pre_segment_' EEG.setname];
pop_saveset(EEGBAK,'filename',['4_pre_segment_' filename],'filepath',[filepath filesep 'Intermediate'],'savemode','onefile');
clear EEGBAK;
end
fprintf(log_file,'%.2f - Segmented data by task flags.\n',toc(tstart));
events=cell(size(eventflags));
for n=1:length(eventflags)
flagVersions = eventflags{n};
flagger = [];
for m=1:length(flagVersions)
flagger = [flagger, ...
find(strcmp({EEG.event.type},flagVersions{m}))];
end
events{n} = sort(flagger);
end
eventnames=o.epoch_options.eventNames;
eventnames=[{'pre-events'},eventnames];
EEG = pop_editeventvals(EEG,'insert',{1 [] [] []},'changefield',...
{1 'type' 'pre-events'},'changefield',{1 'latency' 0});
for i=1:length(events)
events{i}=events{i}+1;
end
events=[{1},events];
% Segment data based on consecutive appearance of flags
lastEvent=1;
for i=1:length(eventnames)
eventnames{i} = strrep(eventnames{i},' ','_');
if ~isempty(events{i}); lastEvent=max(max(events{i}),lastEvent); end
end
for i=1:size(events,2)
thisEvents=events{i};
if isempty(thisEvents); disp([eventnames{i} ' not recorded.']);
fprintf(log_file,[eventnames{i} ' data not recorded']);
fprintf(log_file,'.\n');
else % Events found
for j=1:length(thisEvents)
tStart=cell2mat({EEG.event(thisEvents(j)).latency})/EEG.srate;
if thisEvents(j)==lastEvent; tEnd=EEG.xmax;
else; tEnd=cell2mat({EEG.event(thisEvents(j)+1).latency})/EEG.srate;
end
fprintf(log_file,['%.2f - ' filename '_' eventnames{i} '_' num2str(j) '.set'],toc(tstart));
fprintf(log_file,'.\n'); warning off % Disable event latency warnings -- eeglab issue
EEGBAK = pop_select(EEG,'time',[tStart tEnd]); w = warning('query','last'); warning on
EEGBAK = eeg_checkset(EEGBAK);
EEGBAK.setname = [eventnames{i} '_' num2str(j) '_' EEG.setname];
if o.epoch_options.epoch_on
oldname = EEGBAK.setname;
if EEGBAK.xmax > o.epoch_options.epoch_length
EEGBAK = make_epochs(EEGBAK,o.epoch_options.epoch_length);
fprintf(log_file,'%.2f - Epoched data every %.2f seconds.\n',toc(tstart),o.epoch_options.epoch_length);
else
fprintf(log_file,'%.2f - Data not epoched (segment length less than %.2f seconds).\n',toc(tstart),o.epoch_options.epoch_length);
end
EEGBAK.setname = oldname;
end
%%%%%%%%%%%%%%%%%%%
% Epoch rejection %
%%%%%%%%%%%%%%%%%%%
o.epoch_options.rejection_options.measure=[1 1 1];
o.epoch_options.rejection_options.z=[3 3 3];
EEGtemp = h_pop_reref(EEGBAK, [], 'exclude', ext_chans, 'refstate', ref_chan);
if size(EEGtemp.data,3) > 1
list_properties = epoch_properties(EEGtemp,setdiff(eeg_chans,chans_to_interp));
[lengths] = min_z(list_properties,o.epoch_options.rejection_options);
EEGBAK=pop_rejepoch(EEGBAK, find(lengths),0);
fprintf(log_file,[' %.2f - Rejected %d epoch(s) at positions(s) ' ...
regexprep(num2str(find(lengths)'),'\s+',', ') '.\n'],toc(tstart),length(find(lengths)));
EEGBAK.saved='no';
end
%%%%%%%%%%%%%%%%%%%%%%%
% Epoch interpolation %
%%%%%%%%%%%%%%%%%%%%%%%
do_epoch_interp=1;
o.epoch_interp_options.rejection_options.measure=[1 1 1 1];
o.epoch_interp_options.rejection_options.z=[3 3 3 3];
if do_epoch_interp && length(size(EEGBAK.data)) > 2
if ~exist([filepath filesep 'Channel interpolations by epoch'],'dir')
mkdir([filepath filesep 'Channel interpolations by epoch']);
end % Directory for epoch interpolation text files
status = '';
lengths_ep=cell(1,size(EEGBAK.data,3));
for v=1:size(EEGBAK.data,3)
list_properties = single_epoch_channel_properties(EEGBAK,v,eeg_chans);
lengths_ep{v}=eeg_chans(logical(min_z(list_properties,o.epoch_interp_options.rejection_options)));
status = [status sprintf('%d: ',v) sprintf('%d ',lengths_ep{v}) sprintf('\n')];
end
EEGBAK=h_epoch_interp_spl(EEGBAK,lengths_ep,ext_chans);
EEGBAK.saved='no';
epoch_interps_log_file=fopen([filepath filesep ...
'Channel interpolations by epoch' filesep filename ...