diff --git a/experiments_mask_generation.py b/experiments_mask_generation.py index a27eb39c4..bece6d3d9 100644 --- a/experiments_mask_generation.py +++ b/experiments_mask_generation.py @@ -6,7 +6,7 @@ from extras.inpaint_mask import SAMOptions, generate_mask_from_image original_image = Image.open('cat.webp') -image = np.array(original_image, dtype=np.uint8) +image = np.asarray(original_image, dtype=np.uint8) sam_options = SAMOptions( dino_prompt='eye', diff --git a/extras/facexlib/detection/align_trans.py b/extras/facexlib/detection/align_trans.py index 07f1eb365..56b24c1e1 100644 --- a/extras/facexlib/detection/align_trans.py +++ b/extras/facexlib/detection/align_trans.py @@ -49,12 +49,12 @@ def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, oute inner_padding_factor)) Returns: ---------- - @reference_5point: 5x2 np.array + @reference_5point: 5x2 np.asarray each row is a pair of transformed coordinates (x, y) """ - tmp_5pts = np.array(REFERENCE_FACIAL_POINTS) - tmp_crop_size = np.array(DEFAULT_CROP_SIZE) + tmp_5pts = np.asarray(REFERENCE_FACIAL_POINTS) + tmp_crop_size = np.asarray(DEFAULT_CROP_SIZE) # 0) make the inner region a square if default_square: @@ -79,7 +79,7 @@ def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, oute if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None): output_size = tmp_crop_size * \ (1 + inner_padding_factor * 2).astype(np.int32) - output_size += np.array(outer_padding) + output_size += np.asarray(outer_padding) if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]): raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])') @@ -90,7 +90,7 @@ def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, oute tmp_crop_size += np.round(size_diff).astype(np.int32) # 2) resize the padded inner region - size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2 + size_bf_outer_pad = np.asarray(output_size) - np.asarray(outer_padding) * 2 if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]: raise FaceWarpException('Must have (output_size - outer_padding)' @@ -103,7 +103,7 @@ def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, oute tmp_crop_size = size_bf_outer_pad # 3) add outer_padding to make output_size - reference_5point = tmp_5pts + np.array(outer_padding) + reference_5point = tmp_5pts + np.asarray(outer_padding) tmp_crop_size = output_size return reference_5point @@ -116,13 +116,13 @@ def get_affine_transform_matrix(src_pts, dst_pts): get affine transform matrix 'tfm' from src_pts to dst_pts Parameters: ---------- - @src_pts: Kx2 np.array + @src_pts: Kx2 np.asarray source points matrix, each row is a pair of coordinates (x, y) - @dst_pts: Kx2 np.array + @dst_pts: Kx2 np.asarray destination points matrix, each row is a pair of coordinates (x, y) Returns: ---------- - @tfm: 2x3 np.array + @tfm: 2x3 np.asarray transform matrix from src_pts to dst_pts """ @@ -149,17 +149,17 @@ def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 1 apply affine transform 'trans' to uv Parameters: ---------- - @src_img: 3x3 np.array + @src_img: 3x3 np.asarray input image @facial_pts: could be 1)a list of K coordinates (x,y) or - 2) Kx2 or 2xK np.array + 2) Kx2 or 2xK np.asarray each row or col is a pair of coordinates (x, y) @reference_pts: could be 1) a list of K coordinates (x,y) or - 2) Kx2 or 2xK np.array + 2) Kx2 or 2xK np.asarray each row or col is a pair of coordinates (x, y) or 3) None diff --git a/extras/facexlib/detection/matlab_cp2tform.py b/extras/facexlib/detection/matlab_cp2tform.py index b2a8b54a9..afb56d929 100644 --- a/extras/facexlib/detection/matlab_cp2tform.py +++ b/extras/facexlib/detection/matlab_cp2tform.py @@ -18,14 +18,14 @@ def tformfwd(trans, uv): Parameters: ---------- - @trans: 3x3 np.array + @trans: 3x3 np.asarray transform matrix - @uv: Kx2 np.array + @uv: Kx2 np.asarray each row is a pair of coordinates (x, y) Returns: ---------- - @xy: Kx2 np.array + @xy: Kx2 np.asarray each row is a pair of transformed coordinates (x, y) """ uv = np.hstack((uv, np.ones((uv.shape[0], 1)))) @@ -42,14 +42,14 @@ def tforminv(trans, uv): Parameters: ---------- - @trans: 3x3 np.array + @trans: 3x3 np.asarray transform matrix - @uv: Kx2 np.array + @uv: Kx2 np.asarray each row is a pair of coordinates (x, y) Returns: ---------- - @xy: Kx2 np.array + @xy: Kx2 np.asarray each row is a pair of inverse-transformed coordinates (x, y) """ Tinv = inv(trans) @@ -84,9 +84,9 @@ def findNonreflectiveSimilarity(uv, xy, options=None): tx = r[2] ty = r[3] - Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]]) + Tinv = np.asarray([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]]) T = inv(Tinv) - T[:, 2] = np.array([0, 0, 1]) + T[:, 2] = np.asarray([0, 0, 1]) return T, Tinv @@ -94,8 +94,8 @@ def findNonreflectiveSimilarity(uv, xy, options=None): def findSimilarity(uv, xy, options=None): options = {'K': 2} - # uv = np.array(uv) - # xy = np.array(xy) + # uv = np.asarray(uv) + # xy = np.asarray(xy) # Solve for trans1 trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options) @@ -109,7 +109,7 @@ def findSimilarity(uv, xy, options=None): trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options) # manually reflect the tform to undo the reflection done on xyR - TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]]) + TreflectY = np.asarray([[-1, 0, 0], [0, 1, 0], [0, 0, 1]]) trans2 = np.dot(trans2r, TreflectY) @@ -140,9 +140,9 @@ def get_similarity_transform(src_pts, dst_pts, reflective=True): Parameters: ---------- - @src_pts: Kx2 np.array + @src_pts: Kx2 np.asarray source points, each row is a pair of coordinates (x, y) - @dst_pts: Kx2 np.array + @dst_pts: Kx2 np.asarray destination points, each row is a pair of transformed coordinates (x, y) @reflective: True or False @@ -153,9 +153,9 @@ def get_similarity_transform(src_pts, dst_pts, reflective=True): Returns: ---------- - @trans: 3x3 np.array + @trans: 3x3 np.asarray transform matrix from uv to xy - trans_inv: 3x3 np.array + trans_inv: 3x3 np.asarray inverse of trans, transform matrix from xy to uv """ @@ -181,12 +181,12 @@ def cvt_tform_mat_for_cv2(trans): Parameters: ---------- - @trans: 3x3 np.array + @trans: 3x3 np.asarray transform matrix from uv to xy Returns: ---------- - @cv2_trans: 2x3 np.array + @cv2_trans: 2x3 np.asarray transform matrix from src_pts to dst_pts, could be directly used for cv2.warpAffine() """ @@ -209,9 +209,9 @@ def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True): Parameters: ---------- - @src_pts: Kx2 np.array + @src_pts: Kx2 np.asarray source points, each row is a pair of coordinates (x, y) - @dst_pts: Kx2 np.array + @dst_pts: Kx2 np.asarray destination points, each row is a pair of transformed coordinates (x, y) reflective: True or False @@ -222,7 +222,7 @@ def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True): Returns: ---------- - @cv2_trans: 2x3 np.array + @cv2_trans: 2x3 np.asarray transform matrix from src_pts to dst_pts, could be directly used for cv2.warpAffine() """ @@ -276,8 +276,8 @@ def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True): x = [-1, 0, 4] y = [-1, -10, 4] - uv = np.array((u, v)).T - xy = np.array((x, y)).T + uv = np.asarray((u, v)).T + xy = np.asarray((x, y)).T print('\n--->uv:') print(uv) diff --git a/extras/facexlib/detection/retinaface.py b/extras/facexlib/detection/retinaface.py index 5e0b4f0a5..65e3ede9c 100644 --- a/extras/facexlib/detection/retinaface.py +++ b/extras/facexlib/detection/retinaface.py @@ -245,7 +245,7 @@ def __align_multi(self, image, boxes, landmarks, limit=None): for landmark in landmarks: facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)] - warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112)) + warped_face = warp_and_crop_face(np.asarray(image), facial5points, self.reference, crop_size=(112, 112)) faces.append(warped_face) return np.concatenate((boxes, landmarks), axis=1), faces @@ -304,15 +304,15 @@ def batched_transform(self, frames, use_origin_size): def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True): """ Arguments: - frames: a list of PIL.Image, or np.array(shape=[n, h, w, c], + frames: a list of PIL.Image, or np.asarray(shape=[n, h, w, c], type=np.uint8, BGR format). conf_threshold: confidence threshold. nms_threshold: nms threshold. use_origin_size: whether to use origin size. Returns: - final_bounding_boxes: list of np.array ([n_boxes, 5], + final_bounding_boxes: list of np.asarray ([n_boxes, 5], type=np.float32). - final_landmarks: list of np.array ([n_boxes, 10], type=np.float32). + final_landmarks: list of np.asarray ([n_boxes, 10], type=np.float32). """ # self.t['forward_pass'].tic() frames, self.resize = self.batched_transform(frames, use_origin_size) @@ -340,8 +340,8 @@ def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, us # ignore low scores pred, landm = pred[inds, :], landm[inds, :] if pred.shape[0] == 0: - final_bounding_boxes.append(np.array([], dtype=np.float32)) - final_landmarks.append(np.array([], dtype=np.float32)) + final_bounding_boxes.append(np.asarray([], dtype=np.float32)) + final_landmarks.append(np.asarray([], dtype=np.float32)) continue # sort diff --git a/extras/facexlib/utils/face_restoration_helper.py b/extras/facexlib/utils/face_restoration_helper.py index 2a39361aa..b7f0f68e9 100644 --- a/extras/facexlib/utils/face_restoration_helper.py +++ b/extras/facexlib/utils/face_restoration_helper.py @@ -33,12 +33,12 @@ def get_location(val, length): def get_center_face(det_faces, h=0, w=0, center=None): if center is not None: - center = np.array(center) + center = np.asarray(center) else: - center = np.array([w / 2, h / 2]) + center = np.asarray([w / 2, h / 2]) center_dist = [] for det_face in det_faces: - face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2]) + face_center = np.asarray([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2]) dist = np.linalg.norm(face_center - center) center_dist.append(dist) center_idx = center_dist.index(min(center_dist)) @@ -67,10 +67,10 @@ def __init__(self, self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0])) if self.template_3points: - self.face_template = np.array([[192, 240], [319, 240], [257, 371]]) + self.face_template = np.asarray([[192, 240], [319, 240], [257, 371]]) else: # standard 5 landmarks for FFHQ faces with 512 x 512 - self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935], + self.face_template = np.asarray([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935], [201.26117, 371.41043], [313.08905, 371.15118]]) self.face_template = self.face_template * (face_size / 512.0) if self.crop_ratio[0] > 1: @@ -144,9 +144,9 @@ def get_face_landmarks_5(self, continue if self.template_3points: - landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)]) + landmark = np.asarray([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)]) else: - landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)]) + landmark = np.asarray([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)]) self.all_landmarks_5.append(landmark) self.det_faces.append(bbox[0:5]) if len(self.det_faces) == 0: diff --git a/extras/facexlib/utils/face_utils.py b/extras/facexlib/utils/face_utils.py index 0bbe43c81..fdbf3391c 100644 --- a/extras/facexlib/utils/face_utils.py +++ b/extras/facexlib/utils/face_utils.py @@ -64,7 +64,7 @@ def align_crop_face_landmarks(img, transform_size = output_size * 4 # Parse landmarks - lm = np.array(landmarks) + lm = np.asarray(landmarks) if lm.shape[0] == 5 and lm_type == 'retinaface_5': eye_left = lm[0] eye_right = lm[1] @@ -163,7 +163,7 @@ def align_crop_face_landmarks(img, # Transform use cv2 h_ratio = shrink_ratio[0] / shrink_ratio[1] dst_h, dst_w = int(transform_size * h_ratio), transform_size - template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) + template = np.asarray([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) # use cv2.LMEDS method for the equivalence to skimage transform # ref: https://blog.csdn.net/yichxi/article/details/115827338 affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0] @@ -176,11 +176,11 @@ def align_crop_face_landmarks(img, if return_inverse_affine: dst_h, dst_w = int(output_size * h_ratio), output_size - template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) + template = np.asarray([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) # use cv2.LMEDS method for the equivalence to skimage transform # ref: https://blog.csdn.net/yichxi/article/details/115827338 affine_matrix = cv2.estimateAffinePartial2D( - quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0] + quad_ori, np.asarray([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0] inverse_affine = cv2.invertAffineTransform(affine_matrix) else: inverse_affine = None @@ -234,7 +234,7 @@ def paste_face_back(img, face, inverse_affine): bboxes = get_largest_face(bboxes, h, w)[0] visualize_detection(img_ori, [bboxes], f'tmp/{img_name}_det.png') - landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)]) + landmarks = np.asarray([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)]) cropped_face, inverse_affine = align_crop_face_landmarks( img_ori, diff --git a/extras/inpaint_mask.py b/extras/inpaint_mask.py index 086b7da6f..2225a4cb3 100644 --- a/extras/inpaint_mask.py +++ b/extras/inpaint_mask.py @@ -104,7 +104,7 @@ def generate_mask_from_image(image: np.ndarray, mask_model: str = 'sam', extras= draw = ImageDraw.Draw(debug_dino_image) for box in boxes.numpy(): draw.rectangle(box.tolist(), fill="white") - return np.array(debug_dino_image), dino_detection_count, sam_detection_count, sam_detection_on_mask_count + return np.asarray(debug_dino_image), dino_detection_count, sam_detection_count, sam_detection_on_mask_count transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image.shape[:2]) masks, _, _ = sam_predictor.predict_torch( @@ -126,5 +126,5 @@ def generate_mask_from_image(image: np.ndarray, mask_model: str = 'sam', extras= final_mask_tensor = (final_mask_tensor > 0).to('cpu').numpy() mask_image = np.dstack((final_mask_tensor, final_mask_tensor, final_mask_tensor)) * 255 - mask_image = np.array(mask_image, dtype=np.uint8) + mask_image = np.asarray(mask_image, dtype=np.uint8) return mask_image, dino_detection_count, sam_detection_count, sam_detection_on_mask_count diff --git a/extras/wd14tagger.py b/extras/wd14tagger.py index 368c13dfa..994c93c19 100644 --- a/extras/wd14tagger.py +++ b/extras/wd14tagger.py @@ -57,7 +57,7 @@ def default_interrogator(image_rgb, threshold=0.35, character_threshold=0.85, ex square = Image.new("RGB", (height, height), (255, 255, 255)) square.paste(image, ((height-new_size[0])//2, (height-new_size[1])//2)) - image = np.array(square).astype(np.float32) + image = np.asarray(square).astype(np.float32) image = image[:, :, ::-1] # RGB -> BGR image = np.expand_dims(image, 0) diff --git a/ldm_patched/contrib/external.py b/ldm_patched/contrib/external.py index 927cd3f38..9e648f0bd 100644 --- a/ldm_patched/contrib/external.py +++ b/ldm_patched/contrib/external.py @@ -1476,10 +1476,10 @@ def load_image(self, image): if i.mode == 'I': i = i.point(lambda i: i * (1 / 255)) image = i.convert("RGB") - image = np.array(image).astype(np.float32) / 255.0 + image = np.asarray(image).astype(np.float32) / 255.0 image = torch.from_numpy(image)[None,] if 'A' in i.getbands(): - mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 + mask = np.asarray(i.getchannel('A')).astype(np.float32) / 255.0 mask = 1. - torch.from_numpy(mask) else: mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") @@ -1536,7 +1536,7 @@ def load_image(self, image, channel): mask = None c = channel[0].upper() if c in i.getbands(): - mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0 + mask = np.asarray(i.getchannel(c)).astype(np.float32) / 255.0 mask = torch.from_numpy(mask) if c == 'A': mask = 1. - mask diff --git a/ldm_patched/contrib/external_mask.py b/ldm_patched/contrib/external_mask.py index a86a7fe69..155b8f1f7 100644 --- a/ldm_patched/contrib/external_mask.py +++ b/ldm_patched/contrib/external_mask.py @@ -327,7 +327,7 @@ def INPUT_TYPES(cls): def expand_mask(self, mask, expand, tapered_corners): c = 0 if tapered_corners else 1 - kernel = np.array([[c, 1, c], + kernel = np.asarray([[c, 1, c], [1, 1, 1], [c, 1, c]]) mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) diff --git a/ldm_patched/contrib/external_post_processing.py b/ldm_patched/contrib/external_post_processing.py index 93cb12122..41066282d 100644 --- a/ldm_patched/contrib/external_post_processing.py +++ b/ldm_patched/contrib/external_post_processing.py @@ -154,7 +154,7 @@ def normalized_bayer_matrix(n): bayer_n = int(math.log2(order)) bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5) - result = torch.from_numpy(np.array(im).astype(np.float32)) + result = torch.from_numpy(np.asarray(im).astype(np.float32)) tw = math.ceil(result.shape[0] / bayer_matrix.shape[0]) th = math.ceil(result.shape[1] / bayer_matrix.shape[1]) tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1) @@ -182,7 +182,7 @@ def quantize(self, image: torch.Tensor, colors: int, dither: str): order = int(dither.split('-')[-1]) quantized_image = Quantize.bayer(im, pal_im, order) - quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255 + quantized_array = torch.tensor(np.asarray(quantized_image.convert("RGB"))).float() / 255 result[b] = quantized_array return (result,) diff --git a/ldm_patched/ldm/modules/diffusionmodules/util.py b/ldm_patched/ldm/modules/diffusionmodules/util.py index e261e06a3..7431149e2 100644 --- a/ldm_patched/ldm/modules/diffusionmodules/util.py +++ b/ldm_patched/ldm/modules/diffusionmodules/util.py @@ -163,7 +163,7 @@ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) - return np.array(betas) + return np.asarray(betas) def extract_into_tensor(a, t, x_shape): diff --git a/ldm_patched/ldm/util.py b/ldm_patched/ldm/util.py index 8c09ca1c7..767d5f4cd 100644 --- a/ldm_patched/ldm/util.py +++ b/ldm_patched/ldm/util.py @@ -25,7 +25,7 @@ def log_txt_as_img(wh, xc, size=10): except UnicodeEncodeError: print("Cant encode string for logging. Skipping.") - txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 + txt = np.asarray(txt).transpose(2, 0, 1) / 127.5 - 1.0 txts.append(txt) txts = np.stack(txts) txts = torch.tensor(txts) diff --git a/ldm_patched/modules/utils.py b/ldm_patched/modules/utils.py index f8283a86e..adfc64720 100644 --- a/ldm_patched/modules/utils.py +++ b/ldm_patched/modules/utils.py @@ -374,7 +374,7 @@ def generate_bilinear_data(length_old, length_new, device): def lanczos(samples, width, height): images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images] - images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images] + images = [torch.from_numpy(np.asarray(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images] result = torch.stack(images) return result.to(samples.device, samples.dtype) diff --git a/ldm_patched/pfn/architecture/SCUNet.py b/ldm_patched/pfn/architecture/SCUNet.py index b8354a873..2c051bd07 100644 --- a/ldm_patched/pfn/architecture/SCUNet.py +++ b/ldm_patched/pfn/architecture/SCUNet.py @@ -149,7 +149,7 @@ def forward(self, x): def relative_embedding(self): cord = torch.tensor( - np.array( + np.asarray( [ [i, j] for i in range(self.window_size) diff --git a/modules/gradio_hijack.py b/modules/gradio_hijack.py index 35df81c00..3012e6894 100644 --- a/modules/gradio_hijack.py +++ b/modules/gradio_hijack.py @@ -242,7 +242,7 @@ def _format_image( if self.type == "pil": return im elif self.type == "numpy": - return np.array(im) + return np.asarray(im) elif self.type == "filepath": path = self.pil_to_temp_file( im, dir=self.DEFAULT_TEMP_DIR, format=fmt or "png" @@ -349,7 +349,7 @@ def _segment_by_slic(self, x): x = processing_utils.decode_base64_to_image(x) if self.shape is not None: x = processing_utils.resize_and_crop(x, self.shape) - resized_and_cropped_image = np.array(x) + resized_and_cropped_image = np.asarray(x) try: from skimage.segmentation import slic except (ImportError, ModuleNotFoundError) as err: @@ -418,7 +418,7 @@ def get_interpretation_scores( x = processing_utils.decode_base64_to_image(x) if self.shape is not None: x = processing_utils.resize_and_crop(x, self.shape) - x = np.array(x) + x = np.asarray(x) output_scores = np.zeros((x.shape[0], x.shape[1])) for score, mask in zip(scores, masks): diff --git a/modules/inpaint_worker.py b/modules/inpaint_worker.py index 88a78a6d6..0dab6d8bb 100644 --- a/modules/inpaint_worker.py +++ b/modules/inpaint_worker.py @@ -26,7 +26,7 @@ def __call__(self, x): def box_blur(x, k): x = Image.fromarray(x) x = x.filter(ImageFilter.BoxBlur(k)) - return np.array(x) + return np.asarray(x) def max_filter_opencv(x, ksize=3): diff --git a/modules/util.py b/modules/util.py index 30b9f4d18..d23ad421d 100644 --- a/modules/util.py +++ b/modules/util.py @@ -40,7 +40,7 @@ def erode_or_dilate(x, k): def resample_image(im, width, height): im = Image.fromarray(im) im = im.resize((int(width), int(height)), resample=LANCZOS) - return np.array(im) + return np.asarray(im) def resize_image(im, width, height, resize_mode=1): @@ -98,7 +98,7 @@ def resize(im, w, h): res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) - return np.array(res) + return np.asarray(res) def get_shape_ceil(h, w):