diff --git a/ldm_patched/contrib/external_custom_sampler.py b/ldm_patched/contrib/external_custom_sampler.py index 985b03a0a..60d5e3bd2 100644 --- a/ldm_patched/contrib/external_custom_sampler.py +++ b/ldm_patched/contrib/external_custom_sampler.py @@ -107,8 +107,7 @@ def INPUT_TYPES(s): def get_sigmas(self, model, steps, denoise): start_step = 10 - int(10 * denoise) timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps] - ldm_patched.modules.model_management.load_models_gpu([model]) - sigmas = model.model.model_sampling.sigma(timesteps) + sigmas = model.model_sampling.sigma(timesteps) sigmas = torch.cat([sigmas, sigmas.new_zeros([1])]) return (sigmas, ) diff --git a/modules/sample_hijack.py b/modules/sample_hijack.py index 4ab3cbbde..84752ede7 100644 --- a/modules/sample_hijack.py +++ b/modules/sample_hijack.py @@ -175,7 +175,7 @@ def calculate_sigmas_scheduler_hacked(model, scheduler_name, steps): elif scheduler_name == "sgm_uniform": sigmas = normal_scheduler(model, steps, sgm=True) elif scheduler_name == "turbo": - sigmas = SDTurboScheduler().get_sigmas(namedtuple('Patcher', ['model'])(model=model), steps=steps, denoise=1.0)[0] + sigmas = SDTurboScheduler().get_sigmas(model=model, steps=steps, denoise=1.0)[0] elif scheduler_name == "align_your_steps": model_type = 'SDXL' if isinstance(model.latent_format, ldm_patched.modules.latent_formats.SDXL) else 'SD1' sigmas = AlignYourStepsScheduler().get_sigmas(model_type=model_type, steps=steps, denoise=1.0)[0]