-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsummarize.py
247 lines (220 loc) · 10.2 KB
/
summarize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#encoding=utf-8
import torch
import time
import argparse
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)-8s %(message)s')
logFormatter = logging.Formatter('%(asctime)s %(levelname)-8s %(message)s')
rootLogger = logging.getLogger()
import random
import shutil
import os
from model.noisyChannel import ChannelModel
from model.sentence import SentenceEmbedding
from dataset.data import Dataset
import numpy as np
from utils import recursive_to_device, visualize_tensor, genSubset
from rouge import Rouge
from pyrouge.rouge import Rouge155
from train import rouge_atten_matrix
import copy
from tqdm import tqdm
from IPython import embed
def rouge_atten_matrix(doc, summ):
doc_len = len(doc)
summ_len = len(summ)
temp_mat = np.zeros([doc_len, summ_len])
for i in range(doc_len):
for j in range(summ_len):
temp_mat[i, j] = Rouge().get_scores(doc[i], summ[j])[0]['rouge-1']['f']
return temp_mat
def evalLead3(args):
data = Dataset(path=args.data_path)
Rouge_list, Rouge155_list = [], []
Rouge155_obj = Rouge155(stem=True, tmp='./tmp2')
for batch_iter, valid_batch in tqdm(enumerate(data.gen_train_minibatch()), total=data.test_size):
if not(batch_iter % 100 == 0):
continue
doc, sums, doc_len, sums_len = valid_batch
selected_indexs = range(min(doc.size(0), 1))
doc_matrix = doc.data.numpy()
doc_len_arr = doc_len.data.numpy()
golden_summ_matrix = sums[0].data.numpy()
golden_summ_len_arr = sums_len[0].data.numpy()
doc_arr = []
for i in range(np.shape(doc_matrix)[0]):
temp_sent = " ".join([data.itow[x] for x in doc_matrix[i]][:doc_len_arr[i]])
doc_arr.append(temp_sent)
golden_summ_arr = []
for i in range(np.shape(golden_summ_matrix)[0]):
temp_sent = " ".join([data.itow[x] for x in golden_summ_matrix[i]][:golden_summ_len_arr[i]])
golden_summ_arr.append(temp_sent)
summ_matrix = torch.stack([doc[x] for x in selected_indexs]).data.numpy()
summ_len_arr = torch.stack([doc_len[x] for x in selected_indexs]).data.numpy()
summ_arr = []
for i in range(np.shape(summ_matrix)[0]):
temp_sent = " ".join([data.itow[x] for x in summ_matrix[i]][:summ_len_arr[i]])
summ_arr.append(temp_sent)
score_Rouge = Rouge().get_scores(" ".join(summ_arr), " ".join(golden_summ_arr))
Rouge_list.append(score_Rouge[0]['rouge-l']['f'])
print(Rouge_list[-1])
print('='*60)
print(np.mean(Rouge_list))
def genSentences(args):
np.set_printoptions(threshold=1e10)
print('Loading data......')
data = Dataset(path=args.data_path)
print('Building model......')
args.num_words = len(data.weight) # number of words
sentenceEncoder = SentenceEmbedding(**vars(args))
args.se_dim = sentenceEncoder.getDim() # sentence embedding dim
channelModel = ChannelModel(**vars(args))
print('Initializing word embeddings......')
sentenceEncoder.word_embedding.weight.data.set_(data.weight)
sentenceEncoder.word_embedding.weight.requires_grad = False
print('Fix word embeddings')
device = torch.device('cuda' if args.cuda else 'cpu')
if args.cuda:
print('Transfer models to cuda......')
sentenceEncoder, channelModel = sentenceEncoder.to(device), channelModel.to(device)
identityMatrix = torch.eye(100).to(device)
print('Initializing optimizer and summary writer......')
params = [p for p in sentenceEncoder.parameters() if p.requires_grad] +\
[p for p in channelModel.parameters() if p.requires_grad]
sentenceEncoder.load_state_dict(torch.load(os.path.join(args.save_dir, 'se.pkl')))
channelModel.load_state_dict(torch.load(os.path.join(args.save_dir, 'channel.pkl')))
valid_count = 0
Rouge_list, Rouge155_list = [], []
Rouge_list_2, Rouge_list_l = [], []
Rouge155_list_2, Rouge155_list_l = [], []
total_score = None
#Rouge155_obj = Rouge155(n_bytes=75, stem=True, tmp='.tmp')
Rouge155_obj = Rouge155(stem=True, tmp=".tmp")
best_rouge1_arr = []
redundancy_arr = []
for batch_iter, valid_batch in tqdm(enumerate(data.gen_test_minibatch()), total = data.test_size):
#print(valid_count)
sentenceEncoder.eval(); channelModel.eval()
doc, sums, doc_len, sums_len = recursive_to_device(device, *valid_batch)
num_sent_of_sum = sums[0].size(0)
D = sentenceEncoder(doc, doc_len)
S = sentenceEncoder(sums[0], sums_len[0])
l = D.size(0)
doc_matrix = doc.cpu().data.numpy()
doc_len_arr = doc_len.cpu().data.numpy()
golden_summ_matrix = sums[0].cpu().data.numpy()
golden_summ_len_arr = sums_len[0].cpu().data.numpy()
candidate_indexes = [i for i in range(len(doc_len_arr)) if doc_len_arr[i] >=0 and doc_len_arr[i] <= 10000]
if(len(candidate_indexes) < 3):
continue
doc_ = ""
doc_arr = []
for i in range(np.shape(doc_matrix)[0]):
temp_sent = " ".join([data.itow[x] for x in doc_matrix[i]][:doc_len_arr[i]])
doc_ += str(i) + ": " + temp_sent + "\n\n"
doc_arr.append(temp_sent)
golden_summ_ = ""
golden_summ_arr = []
for i in range(np.shape(golden_summ_matrix)[0]):
temp_sent = " ".join([data.itow[x] for x in golden_summ_matrix[i]][:golden_summ_len_arr[i]])
golden_summ_ += str(i) + ": " + temp_sent + "\n\n"
golden_summ_arr.append(temp_sent)
selected_indexs = []
if args.method == 'iterative':
for _ in range(3):
probs = np.zeros([l]) - 100000
for i in candidate_indexes:
temp = [D[x] for x in selected_indexs]
temp.append(D[i])
temp_prob, addition = channelModel(D, torch.stack(temp))
probs[i] = temp_prob.item()
best_index = np.argmax(probs)
while(best_index in selected_indexs):
probs[best_index] = - 100000
best_index = np.argmax(probs)
selected_indexs.append(best_index)
_,addition = channelModel(D, S)
selected_indexs.sort()
if(args.method == 'iterative-delete'):
current_sent_set = range(l)
best_index = -1
doc_rouge_matrix = rouge_atten_matrix(doc_arr, doc_arr)
for i_ in range(num_sent_of_sum):
D_ = torch.stack([D[x] for x in current_sent_set])
probs = []
print(i_, current_sent_set)
for i in current_sent_set:
temp_prob, addition = channelModel(D_, torch.stack([D[i]]))
probs.append(temp_prob.item())
best_index = np.argmax(probs)
print(current_sent_set[best_index])
selected_indexs.append(current_sent_set[best_index])
temp = []
for i in current_sent_set:
if(doc_rouge_matrix[current_sent_set[best_index], i] < 0.9):
temp.append(i)
if(len(temp) == 0):
break
current_sent_set = temp
probs_arr = []
if args.method == 'top-k-simple':
for i in range(l):
temp_prob, addition = channelModel(D, torch.stack([D[i]]))
probs_arr.append(temp_prob.item())
for _ in range(3):
best_index = np.argmax(probs_arr)
probs_arr[best_index] = - 1000000
selected_indexs.append(best_index)
if args.method == 'top-k':
k_subset = genSubset(range(l), 3)
probs = []
for subset in k_subset:
temp_prob, addition = channelModel(D, torch.stack([D[i] for i in subset]))
probs.append(temp_prob.item())
index = np.argmax(probs)
selected_indexs = k_subset[index]
if args.method == 'random':
selected_indexs = random.sample(range(l), min(3, l))
summ_matrix = torch.stack([doc[x] for x in selected_indexs]).cpu().data.numpy()
summ_len_arr = torch.stack([doc_len[x] for x in selected_indexs]).cpu().data.numpy()
summ_ = ""
summ_arr = []
for i in range(np.shape(summ_matrix)[0]):
temp_sent = " ".join([data.itow[x] for x in summ_matrix[i]][:summ_len_arr[i]])
summ_ += str(i) + ": " + temp_sent + "\n\n"
summ_arr.append(temp_sent)
f_ref = open("ref/"+str(batch_iter)+"_reference.txt","w")
f_sum = open("sum/"+str(batch_iter)+"_decoded.txt","w")
f_ref.write("\n".join(golden_summ_arr))
f_sum.write("\n".join(summ_arr))
print('='*60)
total_score = Rouge155_obj.evaluate_folder("./sum", "./ref")
print(total_score)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--SE-type', default='GRU', choices=['GRU', 'BiGRU', 'AVG'])
parser.add_argument('--method', default = 'iterative', choices=['random', 'top-k-simple', 'top-k', 'iterative', 'iterative-delete', 'lead-3'])
parser.add_argument('--word-dim', type=int, default=300, help='dimension of word embeddings')
parser.add_argument('--hidden-dim', type=int, default=1024, help='dimension of hidden units per layer')
parser.add_argument('--num-layers', type=int, default=1, help='number of layers in LSTM/BiLSTM')
parser.add_argument('--cuda', action='store_true', default=True)
parser.add_argument('--data-path', required=True, help='pickle file obtained by dataset dump or datadir for torchtext')
parser.add_argument('--save-dir', type=str, help='path to save checkpoints and logs')
args = parser.parse_args()
return args
def prepare():
args = parse_args()
fileHandler = logging.FileHandler(os.path.join(args.save_dir, 'examples.log'))
fileHandler.setFormatter(logFormatter)
rootLogger.addHandler(fileHandler)
for k, v in vars(args).items():
print(k+':'+str(v))
return args
def main():
args = prepare()
if args.method == 'lead-3':
evalLead3(args)
else:
genSentences(args)
if __name__ == "__main__":
main()