-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutil.py
127 lines (92 loc) · 4.35 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
import torch
from PIL import Image
import torchvision.transforms.v2 as T
def tensor_to_pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
def pil_to_tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def refine_foreground(image_tensor, mask_tensor, r1=90, r2=7):
if r1 % 2 == 0:
r1 += 1
if r2 % 2 == 0:
r2 += 1
return FB_blur_fusion_foreground_estimator_2(image_tensor, mask_tensor, r1=r1, r2=r2)[0]
def FB_blur_fusion_foreground_estimator_2(image_tensor, alpha_tensor, r1=90, r2=7):
# https://github.com/Photoroom/fast-foreground-estimation
if alpha_tensor.dim() == 3:
alpha_tensor = alpha_tensor.unsqueeze(0) # Add batch
F, blur_B = FB_blur_fusion_foreground_estimator(image_tensor, image_tensor, image_tensor, alpha_tensor, r=r1)
return FB_blur_fusion_foreground_estimator(image_tensor, F, blur_B, alpha_tensor, r=r2)
def FB_blur_fusion_foreground_estimator(image_tensor, F_tensor, B_tensor, alpha_tensor, r=90):
if image_tensor.dim() == 3:
image_tensor = image_tensor.unsqueeze(0)
blurred_alpha = T.functional.gaussian_blur(alpha_tensor, r)
blurred_FA = T.functional.gaussian_blur(F_tensor * alpha_tensor, r)
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
blurred_B1A = T.functional.gaussian_blur(B_tensor * (1 - alpha_tensor), r)
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
F_tensor = blurred_F + alpha_tensor * (image_tensor - alpha_tensor * blurred_F - (1 - alpha_tensor) * blurred_B)
F_tensor = torch.clamp(F_tensor, 0, 1)
return F_tensor, blurred_B
def apply_mask_to_image(image, mask):
"""
Apply a mask to an image and set non-masked parts to transparent.
Args:
image (torch.Tensor): Image tensor of shape (h, w, c) or (1, h, w, c).
mask (torch.Tensor): Mask tensor of shape (1, 1, h, w) or (h, w).
Returns:
torch.Tensor: Masked image tensor of shape (h, w, c+1) with transparency.
"""
# 判断 image 的形状
if image.dim() == 3:
pass
elif image.dim() == 4:
image = image.squeeze(0)
else:
raise ValueError("Image should be of shape (h, w, c) or (1, h, w, c).")
h, w, c = image.shape
# 判断 mask 的形状
if mask.dim() == 4:
mask = mask.squeeze(0).squeeze(0) # 去掉前2个维度 (h,w)
elif mask.dim() == 3:
mask = mask.squeeze(0)
elif mask.dim() == 2:
pass
else:
raise ValueError("Mask should be of shape (1, 1, h, w) or (h, w).")
assert mask.shape == (h, w), "Mask shape does not match image shape."
# 将 mask 扩展到与 image 相同的通道数
image_mask = mask.unsqueeze(-1).expand(h, w, c)
# 应用遮罩,黑色部分是0,相乘后白色1的部分会被保留,其它部分变为了黑色
masked_image = image * image_mask
# 遮罩的黑白当做alpha通道的不透明度,黑色是0表示透明,白色是1表示不透明
alpha = mask
# alpha通道拼接到原图像的RGB中
masked_image_with_alpha = torch.cat((masked_image[:, :, :3], alpha.unsqueeze(2)), dim=2)
return masked_image_with_alpha.unsqueeze(0)
def normalize_mask(mask_tensor):
max_val = torch.max(mask_tensor)
min_val = torch.min(mask_tensor)
if max_val == min_val:
return mask_tensor
normalized_mask = (mask_tensor - min_val) / (max_val - min_val)
return normalized_mask
def add_mask_as_alpha(image, mask):
"""
将 (b, h, w) 形状的 mask 添加为 (b, h, w, 3) 形状的 image 的第 4 个通道(alpha 通道)。
"""
# 检查输入形状
assert image.dim() == 4 and image.size(-1) == 3, "The shape of image should be (b, h, w, 3)."
assert mask.dim() == 3, "The shape of mask should be (b, h, w)"
assert image.size(0) == mask.size(0) and image.size(1) == mask.size(1) and image.size(2) == mask.size(2), "The batch, height, and width dimensions of the image and mask must be consistent"
# 将 mask 扩展为 (b, h, w, 1)
mask = mask[..., None]
image = image * mask
# 将 image 和 mask 拼接为 (b, h, w, 4)
image_with_alpha = torch.cat([image, mask], dim=-1)
return image_with_alpha
def filter_mask(mask, threshold=4e-3):
mask_binary = mask > threshold
filtered_mask = mask * mask_binary
return filtered_mask