-
Notifications
You must be signed in to change notification settings - Fork 13
/
models.py
276 lines (203 loc) · 7.89 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import numpy as np
# For reproducibility
np.random.seed(9999)
import sys
import tensorflow as tf
from keras import backend as K
# keras imports
from keras.models import Model
from keras.layers import Dense, Reshape, Input
from keras.layers.merge import add, concatenate, multiply
from keras.layers.core import Activation, Lambda
from keras.layers.recurrent import GRU
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Convolution1D
from keras.optimizers import SGD, adam
# 'Globals'
fbins = 400
NFFT = (fbins-1)*2
def tf_log10(x):
numerator = tf.log(x)
denominator = tf.log(tf.constant(10, dtype=numerator.dtype))
return numerator / denominator
def tensorflow_fft(x, nfft=NFFT, log_scale=0.1):
# clip for safety
x = tf.clip_by_value(x, clip_value_min=-1e9, clip_value_max=1e9)
# get shape parameters
win_len = tf.shape(x)[-1]
nfft = (win_len-1) * 2
# fft with zero padding
pad = tf.zeros_like(x[:, :(nfft-win_len)])
x_pad = tf.concat([x,pad], axis=-1)
x_c = tf.cast(x_pad, dtype=tf.complex64)
X = tf.spectral.fft(x_c)
X = X[:,:win_len]
X = X / np.sqrt(1.0*NFFT)
X = tf.abs(X)**2
X = tf.cast(X, dtype=x.dtype) # back to original datatype!!
# floor to prevent log of zero
X = tf.maximum(X, 1e-9)
# map to log domain where 0dB -> 1 and -90dB -> -1
X = tf_log10(X) * (20.0/90.0) + 1.0
# scale to weigh errors
X = log_scale*X
return X
# Keras wrapper for FFT layer
def fft_output_shape(x_shape):
return (x_shape[0],fbins)
#fft_layer = Lambda(theano_fft, output_shape=fft_output_shape)
fft_layer = Lambda(tensorflow_fft, output_shape=fft_output_shape)
fft_layer.trainable = False
# Keras wrapper for log
def identity_output_shape(x_shape):
return x_shape
def log_operation(x):
return tf_log10(x)
log_layer = Lambda(log_operation, output_shape=identity_output_shape)
log_layer.trainable = False
def exp_operation(x):
return tf.pow(10.0, x/10.0)
exp_layer = Lambda(exp_operation, output_shape=identity_output_shape)
exp_layer.trainable = False
# fft model for transforming training set samples
def fft_model(model_name="fft_model"):
x = Input(shape=(400,), name="fft_input")
x_fft = fft_layer(x)
model = Model(inputs=[x], outputs=[x_fft], name=model_name)
return model
def time_glot_model(timesteps=128, input_dim=22, output_dim=400, model_name="time_glot_model"):
ac_input = Input(shape=(timesteps, input_dim), name="ac_input")
x_t = ac_input
x_t = GRU(50, activation='relu', kernel_initializer='glorot_normal',
return_sequences=False, unroll=False)(x_t)
x = x_t
x = Dense(output_dim)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Reshape((output_dim, 1))(x)
x = Convolution1D(filters=100,
kernel_size=15,
padding='same',
strides=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
x = Convolution1D(filters=100,
kernel_size=15,
padding='same',
strides=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
x = Convolution1D(filters=100,
kernel_size=15,
padding='same',
strides=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
x = Convolution1D(filters=100,
kernel_size=15,
padding='same',
strides=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
x = Convolution1D(filters=1,
kernel_size=15,
padding='same',
strides=1)(x)
# remove singleton outer dimension
x = Reshape((output_dim,))(x)
x_t = x
x_fft = fft_layer(x)
model = Model(inputs=[ac_input], outputs=[x_t, x_fft], name=model_name)
return model
def generator(input_dim=400, ac_dim=22, output_dim=400):
pls_input = Input(shape=(input_dim,), name="pls_input")
noise_input = Input(shape=(input_dim,), name="noise_input")
pls = Reshape((input_dim, 1))(pls_input)
noise = Reshape((input_dim, 1))(noise_input)
x = concatenate([pls, noise], axis=2) # concat as different channels
x = Convolution1D(filters=100,
kernel_size=15,
padding='same',
strides=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
x = concatenate([pls, x], axis=2) # concat as different channels
x = Convolution1D(filters=100,
kernel_size=15,
padding='same',
strides=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
x = concatenate([pls, x], axis=2) # concat as different channels
x = Convolution1D(filters=100,
kernel_size=15,
padding='same',
strides=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
x = concatenate([pls, x], axis=2) # concat as different channels
x = Convolution1D(filters=1,
kernel_size=15,
padding='same',
strides=1)(x)
x = Activation('tanh')(x)
# force additivity
x = add([pls, x])
# remove singleton outer dimension
x = Reshape((output_dim,))(x)
# add fft channel to output
x_fft = fft_layer(x)
model = Model(inputs=[pls_input, noise_input], outputs=[x, x_fft],
name="generator")
return model
def discriminator(input_dim=400):
pls_input = Input(shape=(input_dim,), name="pls_input")
fft_input = Input(shape=(input_dim,), name="fft_input")
x = Reshape((input_dim, 1))(pls_input)
x_fft = Reshape((input_dim, 1))(fft_input)
x = concatenate([x, x_fft], axis=2) # concat as different channels
# input shape batch_size x 1 (number of channels) x 400 (length of pulse)
x = Convolution1D(filters=64,
kernel_size=7,
strides=3)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
# shape [batch_size x 64 x 132]
x = Convolution1D(filters=128,
kernel_size=7,
strides=3)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
# shape [batch_size x 128 x 42]
x = Convolution1D(filters=256,
kernel_size=7,
strides=3)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
peek_output = x # used for generator training regularization
# shape [batch_size x 256 x 12]
x = Convolution1D(filters=128,
kernel_size=5,
strides=2)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
# shape [batch_size x 128 x 4]
#nn.Sigmoid() # use sigmoid for normal gan, commented out for LS-GAN
x = Convolution1D(filters=1,
kernel_size=3,
strides=2)(x)
# shape [batch_size x 1 x 1]
x = Reshape((1,))(x)
model = Model(inputs=[pls_input, fft_input], outputs=[x, peek_output],
name="discriminator")
return model
def gan_container(generator, discriminator, input_dim=400, ac_dim=22):
discriminator.trainable = False
pls_input = Input(shape=(input_dim,), name="pls_input")
noise_input = Input(shape=(input_dim,), name="noise_input")
x, x_fft = generator([pls_input, noise_input])
x, peek_output = discriminator([x, x_fft])
model = Model(inputs=[pls_input, noise_input], outputs=[x, peek_output],
name="gan_container")
return model