-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathwork.py
200 lines (176 loc) · 9.29 KB
/
work.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
import os
import torch
import numpy as np
from glue_utils import convert_examples_to_seq_features, compute_metrics_absa, ABSAProcessor
from tqdm import tqdm
from transformers import BertConfig, BertTokenizer, XLNetConfig, XLNetTokenizer, WEIGHTS_NAME
from absa_layer import BertABSATagger
from torch.utils.data import DataLoader, TensorDataset, SequentialSampler
from seq_utils import ot2bieos_ts, bio2ot_ts, tag2ts
#ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig)), ())
ALL_MODELS = (
'bert-base-uncased',
'bert-large-uncased',
'bert-base-cased',
'bert-large-cased',
'bert-base-multilingual-uncased',
'bert-base-multilingual-cased',
'bert-base-chinese',
'bert-base-german-cased',
'bert-large-uncased-whole-word-masking',
'bert-large-cased-whole-word-masking',
'bert-large-uncased-whole-word-masking-finetuned-squad',
'bert-large-cased-whole-word-masking-finetuned-squad',
'bert-base-cased-finetuned-mrpc',
'bert-base-german-dbmdz-cased',
'bert-base-german-dbmdz-uncased',
'xlnet-base-cased',
'xlnet-large-cased'
)
MODEL_CLASSES = {
'bert': (BertConfig, BertABSATagger, BertTokenizer),
}
def load_and_cache_examples(args, task, tokenizer):
# similar to that in main.py
processor = ABSAProcessor()
# Load data features from cache or dataset file
cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
'test',
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length),
str(task)))
if os.path.exists(cached_features_file):
print("cached_features_file:", cached_features_file)
features = torch.load(cached_features_file)
examples = processor.get_test_examples(args.data_dir, args.tagging_schema)
else:
#logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels(args.tagging_schema)
examples = processor.get_test_examples(args.data_dir, args.tagging_schema)
features = convert_examples_to_seq_features(examples=examples, label_list=label_list, tokenizer=tokenizer,
cls_token_at_end=bool(args.model_type in ['xlnet']),
cls_token=tokenizer.cls_token,
sep_token=tokenizer.sep_token,
cls_token_segment_id=2 if args.model_type in ['xlnet'] else 0,
pad_on_left=bool(args.model_type in ['xlnet']),
pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0)
torch.save(features, cached_features_file)
total_words = []
for input_example in examples:
text = input_example.text_a
total_words.append(text.split(' '))
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)
# used in evaluation
all_evaluate_label_ids = [f.evaluate_label_ids for f in features]
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
return dataset, all_evaluate_label_ids, total_words
def init_args():
parser = argparse.ArgumentParser()
parser.add_argument("--absa_home", type=str, required=True, help="Home directory of the trained ABSA model")
parser.add_argument("--ckpt", type=str, required=True, help="Directory of model checkpoint for evaluation")
parser.add_argument("--data_dir", type=str, required=True,
help="The incoming data dir. Should contain the files of test/unseen data")
parser.add_argument("--task_name", type=str, required=True, help="task name")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument('--tagging_schema', type=str, default='BIEOS', help="Tagging schema, should be kept same with "
"that of ckpt")
args = parser.parse_args()
return args
def main():
# perform evaluation on single GPU
args = init_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.device = device
if torch.cuda.is_available():
args.n_gpu = torch.cuda.device_count()
args.model_type = args.model_type.lower()
_, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
# load the trained model (including the fine-tuned GPT/BERT/XLNET)
print("Load checkpoint %s/%s..." % (args.ckpt, WEIGHTS_NAME))
model = model_class.from_pretrained(args.ckpt)
# follow the property of tokenizer in the loaded model, e.g., do_lower_case=True
tokenizer = tokenizer_class.from_pretrained(args.absa_home)
model.to(args.device)
model.eval()
predict(args, model, tokenizer)
def predict(args, model, tokenizer):
dataset, evaluate_label_ids, total_words = load_and_cache_examples(args, args.task_name, tokenizer)
sampler = SequentialSampler(dataset)
# process the incoming data one by one
dataloader = DataLoader(dataset, sampler=sampler, batch_size=1)
print("***** Running prediction *****")
total_preds, gold_labels = None, None
idx = 0
if args.tagging_schema == 'BIEOS':
absa_label_vocab = {'O': 0, 'EQ': 1, 'B-POS': 2, 'I-POS': 3, 'E-POS': 4, 'S-POS': 5,
'B-NEG': 6, 'I-NEG': 7, 'E-NEG': 8, 'S-NEG': 9,
'B-NEU': 10, 'I-NEU': 11, 'E-NEU': 12, 'S-NEU': 13}
elif args.tagging_schema == 'BIO':
absa_label_vocab = {'O': 0, 'EQ': 1, 'B-POS': 2, 'I-POS': 3,
'B-NEG': 4, 'I-NEG': 5, 'B-NEU': 6, 'I-NEU': 7}
elif args.tagging_schema == 'OT':
absa_label_vocab = {'O': 0, 'EQ': 1, 'T-POS': 2, 'T-NEG': 3, 'T-NEU': 4}
else:
raise Exception("Invalid tagging schema %s..." % args.tagging_schema)
absa_id2tag = {}
for k in absa_label_vocab:
v = absa_label_vocab[k]
absa_id2tag[v] = k
for batch in tqdm(dataloader, desc="Evaluating"):
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,
# XLM don't use segment_ids
'labels': batch[3]}
outputs = model(**inputs)
# logits: (1, seq_len, label_size)
logits = outputs[1]
# preds: (1, seq_len)
if model.tagger_config.absa_type != 'crf':
preds = np.argmax(logits.detach().cpu().numpy(), axis=-1)
else:
mask = batch[1]
preds = model.tagger.viterbi_tags(logits=logits, mask=mask)
label_indices = evaluate_label_ids[idx]
words = total_words[idx]
pred_labels = preds[0][label_indices]
assert len(words) == len(pred_labels)
pred_tags = [absa_id2tag[label] for label in pred_labels]
if args.tagging_schema == 'OT':
pred_tags = ot2bieos_ts(pred_tags)
elif args.tagging_schema == 'BIO':
pred_tags = ot2bieos_ts(bio2ot_ts(pred_tags))
else:
# current tagging schema is BIEOS, do nothing
pass
p_ts_sequence = tag2ts(ts_tag_sequence=pred_tags)
output_ts = []
for t in p_ts_sequence:
beg, end, sentiment = t
aspect = words[beg:end+1]
output_ts.append('%s: %s' % (aspect, sentiment))
print("Input: %s, output: %s" % (' '.join(words), '\t'.join(output_ts)))
if inputs['labels'] is not None:
# for the unseen data, there is no ``labels''
if gold_labels is None:
gold_labels = inputs['labels'].detach().cpu().numpy()
else:
gold_labels = np.append(gold_labels, inputs['labels'].detach().cpu().numpy(), axis=0)
idx += 1
if __name__ == "__main__":
main()